Subaru announces the Solterra, it’s first battery electric car

Perhaps not by coincidence Subaru chose the week of the COP26 climate summit in Glasgow to launch its first battery electric car, the Solterra (the name is a portmanteau of the Latin worlds for sun and earth). To say that it’s based on the same “e-TNGA” electric vehicle platform as the Toyota bZ4X understates how much the two cars have in common: They are basically one and the same car fitted with different badges. Even the wheels are the same. You have to look very carefully at this pair of genetically identical twins until you find a minor detail that distinguishes them: Yes, the rear lights are a bit different.

Toyota owns 20% of Subaru and they have shared models before (Toyota 86 / Subaru BRZ), but I did not expect to see so little recognizable Subaru DNA in their first battery electric vehicle. Yes, there is a four wheel drive model of both the Solterra and the bZ4X and one assumes that Subaru had a hand in design choices for this, but 4WD is by no means unique for BEVs, as models ranging from the Tesla Model 3 to the Volkswagen’s ID.4 are also offered in dual motor 4 wheel drive configurations. Even the hybrid Prius is available in an electric 4WD version.

What seems a little odd is that the non-4WD model is front wheel drive (FWD). In internal combustion engine (ICE) cars, FWD offers some advantages as it saves having to have a long drive shaft between the front engine and the rear differential. The engine and the gearbox can be bolted together and directly drive the nearby front wheels. At the same time the weight of the engine and gearbox provides good traction for the driving wheels, especially in wintry conditions.

With a BEV however, the bulk of the weight is not in the engine but in the battery under the passenger compartment. Thus there is no real advantage in driving the front wheels as opposed to the rear wheels.

An electric motor driving the rear wheels can be very compact, not much bigger than the rear differential and exhaust system in rear wheel drive (RWD) ICE car. Without the traction advantage of the engine over the wheels, it would be better to go for RWD to get more weight on the driving wheels when going uphill or when accelerating. The turning circle would benefit too if the driving wheels don’t have to steer. It is no coincidence that both Tesla and Volkswagen use RWD for their BEVs, in the case of Volkswagen despite the fact that its best selling models such as the Golf and Passat are FWD. So why not Toyota and Subaru? It’s a mystery to me.

Another detail that surprised me was that even though DC charging on this car can reach a respectable 150 kW, AC charging at home is limited to mere 6.6 kW, which is less than for a compact Chevy Bolt. A Golf-sized ID.3 actually handles up to 11 kW. Some of this may be due to the Japanese Chademo charging standard and domestic grid considerations, as Japanese households only have access to 100 V and 200 V single phase current while the US and Europe use the CCS standard and 120 V / 230 V respectively, with 400 V 3-phase AC available anywhere in Europe. So even if there were technical reasons for limited AC charging speeds in Japan, export models should be able to do much better. Toyota may have specified its home charging module to the smallest common denominator, which if true is a bit disappointing.

As for the looks of the Toyota bZ4X / Subaru Solterra, to me they look like a close cousin to the existing Toyota RAV4 that I personally do not find very appealing. However, it is a big seller in the US market and this similarity may help move existing RAV4 owners over to BEV models once they become available some time in 2022.

Toyota has never been enthusiastic about battery electric vehicles. Its official line has been that hybrids are good enough for today and tomorrow we’ll get hydrogen fuel cell cars like its own Toyota Mirai, with all the benefits of battery electric but none of the drawbacks. There was no real space for battery electric in this vision. Toyota clearly over-promised and under-delivered on this strategy: Hybrid cars still spew CO2 into the atmosphere while almost all hydrogen today is made from fossil fuels. Battery electric does much better than that.

In Japan Toyota could rely on the government to help promote its “hybrids today, hydrogen tomorrow” story but in international markets that won’t fly. There the war for the future of the car is over and battery electric won hands down. No other country has a comparable push for hydrogen refuelling infrastructure as Japan has. Even if there were a domestic market for hydrogen cars in Japan, there won’t be any export markets.

Most experts agree that hydrogen vehicles are at least three times less energy efficient than battery electric vehicles, a flaw that would kill them even if the cars and the necessary fueling infrastructure could be built for the same cost, which isn’t the case. Batteries are far cheaper than hydrogen fuel cells and DC chargers are cheaper than electrolysers and hydrogen fuel stations. With battery prices falling further and further, within a few years BEVs will become cheaper to build than hybrid cars. Then the speed of conversion will only be limited by battery production capacity. It’s not clear Toyota will have the right investments in place by then, since it says its future BEVs will eventually be using solid-state batteries, an as yet unproven technology that only exists in the lab.

Until now Toyota had been avoiding BEVs except for the Chinese market, as it hoped buyers would keep buying its existing more profitable hybrid models. That is becoming a risky bet. Drastic changes needed to avoid the worst of a climate disaster no longer seem so radical compared to worldwide measures taken to deal with SARS-CoV-2. Huge numbers of consumers are ready for change. New BEVs by competitors are picking up market share in the US and in Europe. Toyota can no longer afford to wait on the sidelines or it will be seen as becoming irrelevant due to obsolete products.

This new BEV model is a very cautious move by Toyota and Subaru. Instead of competing head on with Tesla or Volkswagen, Toyota and Subaru are entering the BEV market only about as far as they absolutely have to, to still be a credible global player in 2022. The two companies will have to up their stakes to keep up with market developments.

Covid-19 numbers in Japan and Germany this autumn

My home state of Bavaria (population: 13.1 million) in Germany has had 30,117 new Covid-19 cases in the past 7 days, a 7-day incidence rate of 229 per 100,000. Meanwhile, Tokyo (population: 14.0 million) has had 142, a 7-day incidence rate of 1 per 100,000. The difference in numbers is simply staggering. Given that Germany started vaccinating its citizens months before Japan, it had a headstart on the road to immunity but it has since given up this advantage. A larger share of Japanese residents is fully vaccinated in every age group than in Germany. The growth in the vaccination rate slowed to a crawl in Germany months ago, while it’s still continuing at a healthy clip in Japan.

About two months ago, Tokyo’s Covid incidence (147 per 100,000 in 7 days on 2021-09-03) was quite similar to Bavaria’s current rate. But while the Covid incidence rate has been falling week after week in Japan since early September, it has almost doubled in Germany. The Japanese drop in cases has been amazingly consistent. When cases fall by half every 8 days and this continues for 8 weeks then cases will fall over 100-fold overall. That’s what an exponential decrease looks like. It happens when the reproduction rate of the virus drops below 1.

According to a numerical model created by Kris Popendorf, the two main contributors to the swings in the reproduction rate of the virus are mobility and immunity (you can read more details about his model here). One pushes the number up, the other pushes it down. The combined changes of the two either push the number above 1 (case numbers grow) or below 1 (cases drop). There are other factors, such as adherence to mask-wearing in indoor situations but in Japan’s case this has barely budged even when cases have been falling. Even when the risk of encountering infected individuals has decreased, few Japanese have stopped wearing masks as they still strive to comply with social norms.

With the end of the state of emergency, mobility has increased. People have started to go out and travel again and companies are reducing remote work. On the other hand, while rates of immunity will increase further, this increase is slowing down as the vaccination campaign will be nearing the saturation point over the next month or so. This will shift the balance of the two factors driving the reproduction rate of the virus towards the factor that drives an increase. We can therefore expect the rate of drop to slow and eventually rebound when mobility reaches a level that outweighs the level of immunity in the population. To achieve herd immunity regardless of mobility, the vaccination rate would have to reach a level estimated to be as high as 85-90 percent, which even Japan is unlikely to reach.

Case numbers in Tokyo are now at a level about 1/200 of the peak in August. Therefore even when the numbers start rebounding and grow again, there remains some time for public messaging to prevent a return to a caseload that would overwhelm the healthcare system.

I am much more concerned about the situation in Germany, which has a significant population of people reluctant to protect themselves and others by getting vaccinated. While not as large as in Russia, Romania, Bulgaria or the USA, it makes it very difficult to get numbers under control. In Bavaria, the Covid-19 incidence amongst unvaccinated people is 9 times higher than amongst fully vaccinated people (451.5 vs. 50.9). This means that even though about 65 percent of the population are fully vaccinated, the vast majority of cases are of unvaccinated people. Only 39 percent of teenagers are fully vaccinated there while more than two thirds of teenagers in Tokyo will soon have both shots. Even for age 65+ the rate is 80 percent in Bavaria vs. 91 percent in Tokyo, which means there are proportionally more than twice as many unvaccinated seniors in Bavaria as in Japan.

Unfortunately it will be very difficult to change the attitudes behind the vaccine resistance in Germany and other countries, as it is an issue of trust. Many of the people reluctant to get the shots trust neither politicians nor mass media nor medical professionals nor science in general. They will therefore be difficult to reach.

Restrictions on public activities, such as eating out or travel that are becoming more convenient again for low-risk vaccinated people will gradually erode the non-vaccinated population share but that will take time.

METI and Japan’s exit from the Carbon Economy

On the eve of COP26, the UN Climate Conference in Glasgow, Scotland, the Japanese government took out a full page ad in the Japan times to talk about “beyond zero”, a series of events and initiatives related to Climate Change. It struck me that none of them were specifically about renewable energy, the essential ingredient for a carbon-free economy.

The title of “Tokyo Beyond Zero Week” already had me confused: It reminded me of the Toyota bZ4x, a battery electric SUV that is the first mainstream battery electric vehicle for the Japanese market that Toyota has announced. Toyota has become notorious for bucking the Battery electric trend by plugging hybrids and hydrogen fuel cells, despite hydrogen fuel from renewable sources being 3 times less energy-efficient than battery electric vehicles. The bZ4x is too little, too late when Toyota is telling potential customers that they should really be buying hybrids like the Prius or hydrogen fuel cell vehicles like the Mirai.

METI, the Japanese Ministry of Economy, Trade and Industry has been sponsoring vehicles based on hydrogen fuel cells using hydrogen made from Australian brown coal (lignite), with the resulting CO2 emissions sequestered using “carbon capture and storage” (CCS) and the hydrogen shipped to Japan in cryogenic tank ships developed by Japanese shipyards with METI funding. Essentially it’s a massive pork barrel project, designed to pay industry players to go along with a Rube Goldberg project that will not be economically viable. It’s a way of keeping ecological laggards such as Toyota and the huge Japanese shipbuilders and trading companies relevant. Some of the initiatives sponsored by METI are:

  • LNG (Liquified Natural Gas) Producer-Consumer conference
  • International Conference on Carbon Recycling
  • International Conference on Fuel Ammonia

There is no place for LNG in a zero carbon economy. “Carbon Recycling” aka CCS is a fig leaf to keep burning fossil fuels. Ammonia may be a necessary fuels for ships and airplanes, but if it’s made from coal it won’t be green energy.

Why is the METI ad not talking about offshore wind and geothermal power, two of the most important energy sources for green baseload electricity? It’s because they are primarily concerned about creating and maintaining business opportunities for Toyota, trading companies making profits from fossil fuel imports and other companies wedded to the fossil fuel industry and not about how to get Japan ready for the zero carbon age.

I find this very sad. As a country with limited fossil fuel resources, Japan could become a prime player in the post-carbon era, developing new technologies to help other countries move beyond fossil energy sources. Japan has huge opportunities in offshore wind, onshore wind, solar and geothermal but its government has been largely turning a blind eye to them because those energy sources can not be controlled by its big trading companies. Likewise, its biggest automobile manufacturer is a laggard in battery electric vehicles which is determined to sabotage the switch to BEVs.