Toyota Hydrogen Combustion Engine Cars

Since 2014 Toyota has sold a little over 10,000 Toyota Mirai, a hydrogen fuel cell vehicle (FCV). The starting price of this 4 seat sedan model in Japan is about 7.1 million yen (currently about US$63,000) which is more than 50% more expensive than a battery electric Tesla Model 3 which seats 5 adults. And it seems unlikely that Toyota can make a profit on a car being made in such small numbers as the Mirai, unlike Tesla does with the cars it makes in large numbers in its plants on three continents.

Tesla sold about half a million battery electric vehicles (BEVs) last year and looks set to sell somewhere between 900,000 and 1 million cars in 2021. This means Tesla will have sold twice as many BEVs every week in 2021 than the total number of FCVs Toyota has sold since 2014. The sales gap between BEVs and FCVs is getting bigger and bigger.

Recognizing that the high cost of fuel cells makes it difficult to compete, Toyota has announced that it sees a market for cars with internal combustion engines (ICE) that burn hydrogen instead of gasoline. They should be cheaper to make than fuel cell cars and will not produce any CO2 if hydrogen is made from non-fossil energy sources.

It’s not a novel idea though. BMW tried it in its BMW Hydrogen 7 technology carrier based on its 7-series back in 2005-2007. It never went anywhere. Besides the absence of a fuel supply network, there were also issues with emissions. Hydrogen flames burn extremely hot, which means you end up with a lot of smog-forming NOX emissions — worse than diesels.

In terms of efficiency, hydrogen ICEs are worse than FCVs which are much worse than BEVs. While BMW used cryogenic tanks with liquefied hydrogen at -253 Β°C, Toyota most likely will use high pressure tanks like in its Mirai for its hydrogen ICEs. They hold hydrogen gas at pressures of up to 700 bar. Both liquefaction and compression require huge amounts of electricity that can not be used for propulsion but is effectively wasted. An FCV consumes three times more electricity for electrolysis to make the hydrogen fuel it consumes than a BEV uses to charge a battery to drive the same distance. A hydrogen combustion engine is even less efficient. Where will this hydrogen come from? We don’t currently have a surplus of solar panels or wind turbines to produce this electricity. That means a hydrogen economy will need significantly larger investments in renewable energy than with battery vehicles. Hydrogen for cars makes no economic sense whatsoever.

It makes even less sense for hydrogen ICEs than for hydrogen FCVs. Fundamentally, it’s no more than an excuse for not giving up on building internal combustion engines, pretending that nothing has changed even in a world that is facing climate change that we need to address as soon as possible.

I am afraid Toyota will not make a turn-around and face the reality that the industry is switching to BEVs within the shortest time possible until it replaces Toyoda Akio, its current company president. Mr Toyoda is the grandson of the founder of the company and a keen race car driver. He lacks the vision that Toyota will need in the transition to a carbon free future. Mr Toyoda needs to retire, along with the dead-end technologies he is committed to.

Subaru announces the Solterra, it’s first battery electric car

Perhaps not by coincidence Subaru chose the week of the COP26 climate summit in Glasgow to launch its first battery electric car, the Solterra (the name is a portmanteau of the Latin worlds for sun and earth). To say that it’s based on the same “e-TNGA” electric vehicle platform as the Toyota bZ4X understates how much the two cars have in common: They are basically one and the same car fitted with different badges. Even the wheels are the same. You have to look very carefully at this pair of genetically identical twins until you find a minor detail that distinguishes them: Yes, the rear lights are a bit different.

Toyota owns 20% of Subaru and they have shared models before (Toyota 86 / Subaru BRZ), but I did not expect to see so little recognizable Subaru DNA in their first battery electric vehicle. Yes, there is a four wheel drive model of both the Solterra and the bZ4X and one assumes that Subaru had a hand in design choices for this, but 4WD is by no means unique for BEVs, as models ranging from the Tesla Model 3 to the Volkswagen’s ID.4 are also offered in dual motor 4 wheel drive configurations. Even the hybrid Prius is available in an electric 4WD version.

What seems a little odd is that the non-4WD model is front wheel drive (FWD). In internal combustion engine (ICE) cars, FWD offers some advantages as it saves having to have a long drive shaft between the front engine and the rear differential. The engine and the gearbox can be bolted together and directly drive the nearby front wheels. At the same time the weight of the engine and gearbox provides good traction for the driving wheels, especially in wintry conditions.

With a BEV however, the bulk of the weight is not in the engine but in the battery under the passenger compartment. Thus there is no real advantage in driving the front wheels as opposed to the rear wheels.

An electric motor driving the rear wheels can be very compact, not much bigger than the rear differential and exhaust system in rear wheel drive (RWD) ICE car. Without the traction advantage of the engine over the wheels, it would be better to go for RWD to get more weight on the driving wheels when going uphill or when accelerating. The turning circle would benefit too if the driving wheels don’t have to steer. It is no coincidence that both Tesla and Volkswagen use RWD for their BEVs, in the case of Volkswagen despite the fact that its best selling models such as the Golf and Passat are FWD. So why not Toyota and Subaru? It’s a mystery to me.

Another detail that surprised me was that even though DC charging on this car can reach a respectable 150 kW, AC charging at home is limited to mere 6.6 kW, which is less than for a compact Chevy Bolt. A Golf-sized ID.3 actually handles up to 11 kW. Some of this may be due to the Japanese Chademo charging standard and domestic grid considerations, as Japanese households only have access to 100 V and 200 V single phase current while the US and Europe use the CCS standard and 120 V / 230 V respectively, with 400 V 3-phase AC available anywhere in Europe. So even if there were technical reasons for limited AC charging speeds in Japan, export models should be able to do much better. Toyota may have specified its home charging module to the smallest common denominator, which if true is a bit disappointing.

As for the looks of the Toyota bZ4X / Subaru Solterra, to me they look like a close cousin to the existing Toyota RAV4 that I personally do not find very appealing. However, it is a big seller in the US market and this similarity may help move existing RAV4 owners over to BEV models once they become available some time in 2022.

Toyota has never been enthusiastic about battery electric vehicles. Its official line has been that hybrids are good enough for today and tomorrow we’ll get hydrogen fuel cell cars like its own Toyota Mirai, with all the benefits of battery electric but none of the drawbacks. There was no real space for battery electric in this vision. Toyota clearly over-promised and under-delivered on this strategy: Hybrid cars still spew CO2 into the atmosphere while almost all hydrogen today is made from fossil fuels. Battery electric does much better than that.

In Japan Toyota could rely on the government to help promote its “hybrids today, hydrogen tomorrow” story but in international markets that won’t fly. There the war for the future of the car is over and battery electric won hands down. No other country has a comparable push for hydrogen refuelling infrastructure as Japan has. Even if there were a domestic market for hydrogen cars in Japan, there won’t be any export markets.

Most experts agree that hydrogen vehicles are at least three times less energy efficient than battery electric vehicles, a flaw that would kill them even if the cars and the necessary fueling infrastructure could be built for the same cost, which isn’t the case. Batteries are far cheaper than hydrogen fuel cells and DC chargers are cheaper than electrolysers and hydrogen fuel stations. With battery prices falling further and further, within a few years BEVs will become cheaper to build than hybrid cars. Then the speed of conversion will only be limited by battery production capacity. It’s not clear Toyota will have the right investments in place by then, since it says its future BEVs will eventually be using solid-state batteries, an as yet unproven technology that only exists in the lab.

Until now Toyota had been avoiding BEVs except for the Chinese market, as it hoped buyers would keep buying its existing more profitable hybrid models. That is becoming a risky bet. Drastic changes needed to avoid the worst of a climate disaster no longer seem so radical compared to worldwide measures taken to deal with SARS-CoV-2. Huge numbers of consumers are ready for change. New BEVs by competitors are picking up market share in the US and in Europe. Toyota can no longer afford to wait on the sidelines or it will be seen as becoming irrelevant due to obsolete products.

This new BEV model is a very cautious move by Toyota and Subaru. Instead of competing head on with Tesla or Volkswagen, Toyota and Subaru are entering the BEV market only about as far as they absolutely have to, to still be a credible global player in 2022. The two companies will have to up their stakes to keep up with market developments.

METI and Japan’s exit from the Carbon Economy

On the eve of COP26, the UN Climate Conference in Glasgow, Scotland, the Japanese government took out a full page ad in the Japan times to talk about “beyond zero”, a series of events and initiatives related to Climate Change. It struck me that none of them were specifically about renewable energy, the essential ingredient for a carbon-free economy.

The title of “Tokyo Beyond Zero Week” already had me confused: It reminded me of the Toyota bZ4x, a battery electric SUV that is the first mainstream battery electric vehicle for the Japanese market that Toyota has announced. Toyota has become notorious for bucking the Battery electric trend by plugging hybrids and hydrogen fuel cells, despite hydrogen fuel from renewable sources being 3 times less energy-efficient than battery electric vehicles. The bZ4x is too little, too late when Toyota is telling potential customers that they should really be buying hybrids like the Prius or hydrogen fuel cell vehicles like the Mirai.

METI, the Japanese Ministry of Economy, Trade and Industry has been sponsoring vehicles based on hydrogen fuel cells using hydrogen made from Australian brown coal (lignite), with the resulting CO2 emissions sequestered using “carbon capture and storage” (CCS) and the hydrogen shipped to Japan in cryogenic tank ships developed by Japanese shipyards with METI funding. Essentially it’s a massive pork barrel project, designed to pay industry players to go along with a Rube Goldberg project that will not be economically viable. It’s a way of keeping ecological laggards such as Toyota and the huge Japanese shipbuilders and trading companies relevant. Some of the initiatives sponsored by METI are:

  • LNG (Liquified Natural Gas) Producer-Consumer conference
  • International Conference on Carbon Recycling
  • International Conference on Fuel Ammonia

There is no place for LNG in a zero carbon economy. “Carbon Recycling” aka CCS is a fig leaf to keep burning fossil fuels. Ammonia may be a necessary fuels for ships and airplanes, but if it’s made from coal it won’t be green energy.

Why is the METI ad not talking about offshore wind and geothermal power, two of the most important energy sources for green baseload electricity? It’s because they are primarily concerned about creating and maintaining business opportunities for Toyota, trading companies making profits from fossil fuel imports and other companies wedded to the fossil fuel industry and not about how to get Japan ready for the zero carbon age.

I find this very sad. As a country with limited fossil fuel resources, Japan could become a prime player in the post-carbon era, developing new technologies to help other countries move beyond fossil energy sources. Japan has huge opportunities in offshore wind, onshore wind, solar and geothermal but its government has been largely turning a blind eye to them because those energy sources can not be controlled by its big trading companies. Likewise, its biggest automobile manufacturer is a laggard in battery electric vehicles which is determined to sabotage the switch to BEVs.

Tesla 4680 cells and bad journalism

Tesla and Pansonic have introduced the new 4680 battery cell that future battery packs for the Model Y and the Cybertruck will be based on. These larger cells will replace the previous 2170 form factor that current Tesla packs are based on, which in turn replaced the 18650 cells that Tesla inherited from the laptop industry.

Some of the articles about the new cell have talked about the 5 times higher capacity of the cells saying it would address the problem of “range anxiety”:

5 times more energy means less range anxiety and more drive time. It means fewer stops on a road trip and a more enjoyable experience.
(Why The Tesla Tabless Battery Is So Good, torquenews.com, 2021-03-30)

Actually, this claim is embarassingly disingenuous.

Yes, the new cells have higher capacity but that’s because they’re bigger, which means a battery pack of a given capacity will be built from fewer but larger cells. The bottom line of capacity by weight or by volume is largely unchanged.

The new cells are 2.2 times the diameter of their predecessors, meaning they will have a cross section 4.8 times larger, so a given number of square meters of floor plan for a particular vehicle will fit 4.8 times fewer of these larger cells with each storing about five times as much energy as their smaller siblings. If you think this makes for 5 times more range then I have a bridge to sell to you πŸ˜‰

The cells are also 80 mm long instead of 70 mm, but for energy density it’s basically a wash: The energy density per liter or per kg is unlikely to be vastly different.

Another point of confusion is Tesla’s claim that the cells will have five times the capacity but 6 times the power output. Some articles have interpreted that as 20% more range which is not the case. The truth is that the new cells can be discharged 20% faster without overheating but the total amount of energy released is unaffected by that. It’s like saying a car with 120 HP will have 20% more range than a car with 100 HP because it can drive faster. In reality it will burn fuel more quickly while doing so. This is strictly about peak power (energy by time), not total capacity.

The reason for the higher output is that the new batteries are tabless. All cylindrical Li-ion cells consist of two layers with a separator layer in between, wrapped up as a roll. Think of a double ply roll of toilet paper. When Tesla switched from 18650 to 2170, they made the roll wider (65 mm to 70 mm) but also made made the rolled-up sandwiched layers longer, giving the roll 21 mm instead of 18 mm of diameter.

This increased capacity per cell but it also meant that when energy is released in the ion exchange between the two layers in the innermost part of the cell, the current needs to flow round and round the rolled up layers until it reaches the tabs soldered to the exterior from where the power is transferred to the two opposite end of the cell.

The tabless design does away with that. In it, all the top edges of one layer touch each other and the battery pole at the top while the bottom ends of the other layer touch each other and the bottom pole. That dramatically shortens the path of the conductor through which current needs to flow. Internal resistance and waste heat are greatly reduced.

The bigger diameter means that the exterior steel skin of the cell is lighter relative to the reactive parts inside for some weight savings.

Not directly related to the bigger format, the new cells also break new ground by making do without any cobalt in their anodes which rely on nickel instead. Unlike cobalt which is primarily sourced from the Democratic Republic of Congo (a troubled country with huge corruption and human rights problems), Nickel is available from sources worldwide.

Several online articles have also repeated a claim that the new cells have a capacity of 9,000 mAh vs the approximately 5,000 mAh of the 2170 cells. This is way off the mark and must be based on bad arithmetic. To be consistent with Tesla’s claim of 5 times the capacity per cell, it would have to have about 25,000 mAh of capacity. That is also consistent with the quoted capacity of a 4680 cell quoted by a Chinese supplier of Volkswagen, which is also looking at using this format in the future.

LFP cells and the 4680 form factor

Personally, I think it would be great to also see a LFP (Lithium Iron Phosphate) version of 4680 cells. Panasonic announced that they would not be making it, but some of Tesla’s Chinese suppliers might opt for this format, which would work well for entry level models. LFP is a very safe chemistry and has a long cycle life, even if the energy density is somewhat lower.

In any case, it makes more sense for BEVs not to have the highest battery capacities possible but instead for some of the battery inventory to be used for infrastructure to decouple quick charging from available grid capacity: A certain percentage of annual battery production should be installed in chargers instead of in cars. Actually, recycled batteries from scrapped BEVs make a lot of sense for this, but so do different chemistries such as redox flow batteries including iron batteries.

If for example, most cars travel less than 150 km per day it does not really make much sense that they have a large but heavy battery that gives them 400 km of range but costs a lot of money and whose weight increases electricity use when accelerating. More weight also means more tire wear.

On the few days that cars need to travel further than their limited range, they should be able to quickly recharge from supercharger stations that use on-site battery storage to be able to recharge cars regardless of whether the grid has spare capacity at that moment or not. This is a far more efficient use of scarce resources than giving all BEVs a huge battery and makes for a more robust electricity grid.

Expiring the Internal Combustion Engine Car

The US state of Washington has decided to ban sales of new cars with internal combustion engines (ICE, gasoline or diesel) by the year 2030. That is five years earlier than in the state of California.

There are two issues to overcome for a switch to battery electric vehicles (BEVs): supply and charging. Two common worries however will not stand in the way of BEVs replacing ICEs: cost and range. Let me explain.

Battery cost per kWh has been dropping for decades and this trend is expected to continue. THis is highly significant: Most parts of a BEV car other than the big battery cost either the same as in an ICE car or they’re cheaper. As a result, the cost of batteries will stop being a major obstacle to adoption of BEVs years before the end of the decade.

The same is true for range. Cheaper batteries mean BEVs with more capacity will become affordable. The higher the capacity, the more km of charge can be replenished in a given number of minutes. For example, a Nissan Leaf with a 40 kWH battery will fast-charge from 0 to 80% in 40 minutes. The Volkswagen ID.4 First Edition with an 82 kWh battery (of which 77 kWh are usable capacity) will go from 5% to 80% charge in 38 minutes, essentially double the charging speed (kWh added per minute) for a battery with twice the range. If you can add hundreds of km of range in the time it takes you to use the toilet and get a cup of coffee then BEVs will be just as viable for long distance trips as ICE cars.

By the middle of this decade there is likely to be a wealth of different battery electric vehicle models on the market, with even BEV laggards such as Toyota, Honda and Subaru having joined in. Production could increase to about 50% of new sales of several large makers (e.g. GM, VW). It will have to scale up further, with the necessary increase in battery production capacity, by the end of the decade to make this happen but it seems eminently doable. Right now, the major bottleneck to ramping up production is not lack of demand but limited availability of battery cells. Every big car maker getting into BEVs will have to build Gigafactories churning out battery packs, or team up with battery makers who make these huge investments.

The more BEV there will be on the road, the more the impact on the electric grid becomes an issue. If you have a car that can cover 300 km or more on a full battery and you can charge at home every night then most likely you will almost never have to seek out a charging station, unlike drivers of ICE cars who regularly will have to fill up at a gas station. BEVs parked in a driveway or garage with a nearby wall socket are much easier to accommodate than cars currently parking in the street or on parking lots, who will require capacity at paid public charging points, which are more likely to be used at daytime. The grid has plenty of capacity for off-peak charging (e.g. overnight), but if a lot of people want to do their charging at superchargers or other fast charging points, this could require an upgrade in generating and transmission capacity to cover a higher daytime peak load. Vehicle to grid technology would help to make this more manageable, as cars sitting idle in a driveway could provide spare power for the few cars doing the odd long distance trip.

In any case, I see a date roughly around 2030 as the Goldilocks target for a phase-out of ICE-powered new cars. For high income countries this goal is neither too unambitious nor too unrealistically aggressive. Japan’s goal by contrast for a phase-out by the mid-2030s that still allows hybrid ICEs like the Toyota Prius after that date is quite unambitious. By setting the bar that low, prime minister Suga pleases Toyota, as expected, allowing it to keep selling dated technology in Japan that they will no longer be able to sell elsewhere. That puts Japan in the company of developing countries, which will most likely continue using ICE cars exported from rich countries for years to come.

The sooner rich countries switch to BEVs, the shorter the long tail of CO2-emitting ICE cars still running in poorer countries will be.

Test-driving a Tesla Model 3 in Tokyo

Recently my son Shintaro and I went to the Tesla showroom in Aoyama, Tokyo to take a Tesla Model 3 for a test drive. I wanted to see for myself how this electric vehicle compared to my almost 12 year old Prius hybrid and to be able to compare it to future EVs from other brands that we may eventually consider.

I’d noticed an increasing number of Teslas around Tokyo, though they’re still far rarer than around the San Francisco bay area. Given that much of Japan is densely populated, range anxiety (an often cited reason for slow electrification) should be less of an issue here compared to the US, particularly with cars that already have over 400 km of range.

I love the practicality of the rear hatch of my Prius that allows me to carry two road bikes without disassembly by simply folding the rear seats. The Tesla Model 3 has a much less accessible trunk, which pretty much rules it out for me. The Model Y will be more practical, but is also even bigger. Apparently it won’t be available in Japan until a year or two after it starts shipping in the US this month (March 2020).

Tesla’s models are quite large by Japanese standards, with implications for parking and for driving on narrow back streets. For example, these are the dimensions of the Tesla Model 3 vs. the current generation Toyota Prius (XW50):

Length: 4690 / 4570 (+120 mm)
Width: 1850 / 1760 (+90 mm)
Height: 1440 / 1470 (-30 mm)

Exact numbers for the Model Y aren’t available yet, but it’s expected to be about the same width but about 1600 mm tall (160 mm taller than the Prius).

The test drive was an unusual experience by Japanese standards. Somebody had mentioned that the dealer experience with Tesla is more like visiting an Apple store than a traditional dealer showroom. I’d say the difference was even greater.

Customer service expectations in Japan are incredibly high and that is probably one factor for Tesla’s relatively sluggish sales here, see a recent Japan Times article.

Shintaro had tried to make the reservation online and was promised a callback within 48 hours, but that never happened so he had to call again to fix up an appointment.

Even when I take my Prius to an oil change at a local gas station, I’ll be served a cup of coffee while I wait. By contrast, when we visited the Tesla showroom to evaluate a JPY 5,100,000 (USD 48,000) car, all we received was a business card of the sales person. They don’t even give you paper brochures. You can look it all up on the website, right?

Before the test drive they took photo copies of our drivers licenses. We were instructed not to take any pictures and to follow the rules of the road. We would be liable for any incidental damage to the car during the test drive. Then we got into the car parked by the roadside outside the showroom, first as passengers, then later taking turns driving it around Akasaka.

I liked the seats, which were nice and firm. The acceleration when you put your foot down is amazing. It feels like a big car but with enough power for its weight. Getting back into the Prius later, it felt quite light by comparison, by which I don’t mean acceleration but it simply feels like a lot less metal being moved around. It tips the scales at about 280 kg less than the base Model 3 (1335 kg vs. 1612 kg).

Some of the controls took some getting used to, such as the lever action of the indicator stalk (which is on the left unlike in Japanese cars) or putting the car into park or into drive with the right stalk. Much of the demonstration involved showing the use of the center screen and its user interface. Many of the functions of the car, such as the electrically assisted steering or the regenerative breaking can be tweaked there, to change the feel of the car.

Headroom in the Tesla was good but personally I don’t much care for the glass roof. In a roll-over accident I would feel safer with a steel roof, but maybe those are not so likely with the low center of gravity afforded by the floor-based battery. The car interior felt overheated when we got into it and no fan was blowing, but I only asked about fan control towards the end of my driving portion. In any other car I would have easily figured it out on my own.

Checking out the trunk and the “frunk” (front trunk) after we got out of the car, the limited access for bulky luggage from the rear was quite a contrast to our Prius, in which we regularly move large items from a DIY center or bicycles for cycling tours far from Tokyo. The Model Y will address that, but it’s also 160 mm taller than the Prius on top of being 90 mm wider like the Model 3. That’s more air resistance and more kWh used to overcome it. That’s one thing I love about the Prius, it offers all this interior space despite being compact and efficient on the outside. πŸ™‚

The width would already make a Model 3 or Model Y a very tight fit in our driveway. We would also have to figure out if there’s enough clearance around the car to plug in the charging cable for overnight charging.

In summary, Tesla’s range of cars is not an easy sell for me as a Japanese customer. While they have great technology, some of the design choices are not a good fit for Japan and the customer experience when dealing with the company (especially given the price range) will not match a lot of cultural expectations.

UPDATE (2020-03-19):

Size information has finally been released for the Model Y. These are the exterior dimensions compared to my current Prius:

Length: 4751 / 4570 (+181 mm)
Width: 1921 / 1760 (+161 mm)
Height: 1624 / 1470 (+154 mm)

Given the width and height it looks like it has roughly 20% more frontal area than the Prius which will impact its air resistance and hence energy usage at freeway speeds.

Toyota is yielding the future to Tesla and other EV makers

In October 2019, Toyota along with General Motors and Fiat Chrysler sided with the Trump administration in its effort to strip the state of California of its ability to set tighter vehicle emission standards than set by the Federal government. In July 2019, several other car makers including Ford, Honda and Volkswagen had sided with California.

This seemed a very odd move for a company whose iconic Prius hybrid was once seen as a way for people ranging from middle class families to Hollywood stars to show their green credentials. Toyota seems on the wrong side of history now.

I also drive a Prius which I bought almost 12 years ago. When it came out, it was way ahead of everything else: Three times as fuel efficient but more spacious and more reliable than my Audi. It wowed me when I first saw one and later when I first test-drove a friend’s. As an engineer I appreciated the clever technology behind it and as a family man I could rely on it for affordable transport.

However, if I were to buy a car now, I’d have a hard time making up my mind. If Tesla had designed its Model 3 as a mid-size hatchback (like the Prius) instead of giving it a trunk, the choice would be easy. Tesla seems set to address that criticism with its forthcoming Model Y, which will be like a slightly larger hatchback version of the Model 3. If Toyota had redesigned its Prius as a battery electric vehicle (BEV) with at least 300 km of range, the choice would have been even easier. The problem is, Toyota isn’t going to do that and I think I understand why.

I have talked to Toyota dealer sales representatives who came to sell me a new Toyota and when I mentioned about electric vehicles, they kept telling me the time wasn’t ripe for that yet, that infrastructure was too spotty and range too short. I would be better off getting another hybrid as the next car. And Toyota has many hybrid models.

This is precisely the problem: Toyota kept enhancing the hybrid drivetrain of the Prius, improving fuel economy with every new version. Now many different models, from the Toyota Aqua / Prius C to the Corolla Hybrid to the JPN Taxi basically all use the same family of engines, gearbox, battery, inverter and other electric systems. This has kept development costs low and maximized economic gain from the numerous patents that Toyota has received for the Prius.

Meanwhile, Tesla appeared on the scene as a complete outsider and took a radically different approach. By going for an all-electric drivetrain they don’t need an Atkinson-cycle internal combustion engine (ICE), an electrically controlled planetary gear transmission and many other mechanical parts that make the Prius family unique. They just need a bodyshell, an electric motor/generator, inverter and battery. For the first models the battery was basically built up from the exact same “18650” cells that power laptops and the bodyshell for the Tesla Roadster was bought in from Lotus.

Batteries for the automotive market are made by specialized suppliers such as Panasonic and LG instead of being based on in-house designs and intellectual property such as ICEs or gearboxes. Motor/generators and inverters are much simpler and less proprietary than ICEs. The basic technology for inverters used in BEVs and the electric part of hybrid drivetrains has been around since before the 1960s. Toyota engineers got the inspiration from the electrical systems used in bullet trains (shinkansen) that launched before the 1964 Tokyo Olympics.

If current owners of conventional or diesel cars replace their aging vehicles with hybrids then Toyota and its stable of Prius and cousins will do very well. If people however take a good look at the ecological realities of the 2020s and beyond, they will see that the sooner we can stop pumping more CO2 into the atmosphere, the less catastrophic our future will be on this planet. If we still drive cars, they will have to run on renewable energy sources, which hybrids can’t do (except plug-in hybrids for relatively short distances).

This raises a second issue: Toyota has been betting on hydrogen as the fuel of the future. Its Toyota Mirai runs on compressed hydrogen (H2), which is converted into electricity in an on-board fuel cell. This gives it a range of about 500 km between refuelling.

If Toyota were to sell BEVs with ranges of 300-450 km, this would undermine the rationale for hydrogen cars which need a completely new infrastructure for refuelling. Each H2 station costs millions of dollars and the fuel is expensive.

The most economical way of making hydrogen is from natural gas or coal, which releases greenhouse gases. Though one could make hydrogen through electrolysis (splitting water into hydrogen and oxygen using electricity), because of inefficiencies inherent in this process, this would actually consume about three times more renewable electricity than covering the same distance by charging/discharging a battery. This is why hydrogen will ultimately remain an automotive dead end.

What hydrogen technology basically gives Toyota is a political fig leaf: They can claim to have a path into a carbon-free future that does not rely on batteries (like Tesla and others). Using that fig leaf they think they can keep selling cars that burn gasoline, in California and elsewhere. Perhaps they can hold off moving beyond hybrids for years and years to come. If they can keep selling what they’ve got they may make healthy profits in the short term, but for the sake of the planet I hope this plan won’t work.

I’ve seen this movie before. In the 1990s Sony launched its MiniDisc (MD) player as a replacement for analog audio tapes and recordable alternative to digital Compact Discs (CDs). Then, in the late 1990s MP3 and flash memory came along: smaller, cheaper, more simple. The whole strategy fell apart. Sony could have accepted that MP3 was a superior solution, but that would have then put them on a level with every other audio consumer product maker. Their patents on MD would have become worthless. So they struggled on with trying to promote MD until they eventually had to kill it. From the inventor of the iconic Sony Walkman that had created a whole new market and sold the brand name to billions of consumers, Sony turned into a company that had lost its way. It let newcomers such as Apple with its iPod (which soon morphed into the iPhone) take over the market and consumer mindshare. The rest is history.

So if you’re listening, Toyota: Please build a car as spacious, practical and reliable as the Prius, but without a hybrid drivetrain that still releases CO2 with every km driven. Make it a no compromise battery electric vehicle. Support vehicle-to-grid technology, in which parked cars have an important role to play for stabilizing the electrical grid. Instead of working with fossil fuel companies to turn fossil fuel into hydrogen for thousands of yet to be built H2 filling stations, support expanding renewable power production from solar, offshore and onshore wind, geothermal and large scale storage, which is what we will need for a carbon-neutral future.

Meanwhile, when the time comes to replace my 12 year old car I will look at all the battery electric hatchbacks on the market then. If there is no Toyota amongst them then my next car will not be a Toyota. It’s as simple as that.

Dekopon, Cherry Blossoms and Some Rain: BRM330 200 Km in West Izu

The dekopon season will be coming to an end soon, but to compensate the shorts-and-short-sleeves season has started! I enjoyed both on Saturday, buying local dekopon (4 big juicy ones for 300 yen) in West Izu. The roadside stand worked on the honour principle: I dropped my coins into the collection box and took one bag of fruits.

I was the only rider in shorts at the start of the 2019BRM330 200 km brevet in Mishima, out of 13 who had shown up, out of 30 who had signed up, the others having been put off by a weather forecast that predicted a high chance of rain in the evening.

I drove to Mishima on Friday night with the Elephant Bikes NFE in the back of my Prius and parked the car in a coin parking lot (700 yen for 24h). I stayed at the Toyoko Inn, which was also going to be the goal of the 203 km ride which started at Mishima station. There were 2 courses, the hilly Matsuzaki course and the insanely hilly Darumayama course. I had tried and DNFed the latter in 2017, so it was Matsuzaki again for me.

Before the 08:00 start I loaded up the course on my GPS unit, but hit an unexpected snag when it reported a file system error that required a factory reset of the unit, meaning I’d lose my stored breadcrumb trail for navigation that I normally use. So I had little alternative but using my phone and the paper cue sheets for navigation. However, I had not brought my usual plastic cover for the phone to protect it on the handle bars in case of rain, nor had I weather proofed the cue sheets. The map bag of my front bag is not totally waterproof.

I used RWGPS to load the course and map and it gave me verbal directions in English throughout the ride. I kept the phone connected to a 10,000 mAh USB battery in my front bag until the goal. I have two USB batteries and two phones. There’s always a plan B and sometimes a plan C! πŸ™‚

When the rain started to come down on the way back near Toi, I covered the phone with a plastic shower cap from a hotel stay which I secured it with rubber bands. I always keep one shower cap in the front bag as an emergency cover for the leather saddle or whatever. When my wet fingers made the touch screen difficult to operate, I used spare dry socks that I also kept in the same bag to wipe the screen dry again.

During a brevet on February 10, 2019 organized by Audax Kinki, a participant was sadly hit from behind and killed by a car in a tunnel. Brevet participants are required to wear reflective vests throughout the ride, but sometimes they wear a backpack which could partly obscure the reflective vest. Thus we were asked to wear the vest on top of any backpack. I actually brought two reflective vests, one to wear and one for my light string backpack (for spare clothes) to “wear”, which made getting changed quicker. I had bought the second at a brevet reception when I had forgotten the original one at home.

Most of the starter group did not spread out much until we turned the NW corner of Izu and the bigger climbs started. I took some pictures of the others and the scenery, but it was too hazy to see anything of Mt Fuji or even much of the mainland coast of Shizuoka on the other side of the bay. Mt Fuji remained totally hidden for the entire day.

As it got warmer towards noon I started fading a bit. I would have been really uncomfortable in long pants and thermal jacket. I was now riding on my own but comfortable in the knowledge that I was 50 minutes ahead of minimum pace at that point, which should normally ensure that I would complete the ride under the time limit.

There were a fair number of cherry trees, but most of them weren’t in full bloom yet, many quite sparse at the top still, so I didn’t take too many pictures of them.

There were only two timed controls on this course between the start and the goal, with 161 km in between. Near the southernmost point of the ride there was a photo check: We had to take a picture of a viewing platform on a mountain road together with our brevet card to prove we passed there. I climbed the mountain road together with a young couple. They had already suffered a puncture in NW Izu that had cost them time, while I frequently stopped for pictures.

From there I enjoyed a long descent to Kumomi Onsen. I had visited there in December and then climbed Mt Eboshi, which offers a breathtaking scenery of the coast. We passed Iwachi Onsen, where I had often visited by car when our children were still little.

I was trying to make it to near Heda village by sunset, where a staff member was taking pictures of all of us as we passed, but my own pictures took priority. At the last conbini in Toi before the wilderness it started raining and I put on my rain gear. On the descents I had to be a lot more careful. The wet asphalt soaked up all the light.

The rain became quite intense and I couldn’t help thinking of the 17 non-starters who had listened to the weather forecast… but with my time buffer I expected I’d still make it in time, unless I had bad navigation problems in the last 20 km. The phone became difficult to use when its touch screen got wet. Once, the RWGPS app somehow ended up back on the route selection and I had to restart the Navigation, which seemed to have cost me my downloaded maps πŸ™ Now I could only use the turn by turn instructions to follow the course, but no map view. Fortunately, those turn by turn instructions worked flawlessly, even if the sound volume wasn’t always high enough to be clearly audible. Worst case I had to check the screen. Twice I went off-course but it soon let me know and it recovered when I backtracked to the wrong turn.

After more than 3 hours of riding in the dark I finally got close to Mishima station. When I stopped at the traffic light across from the Toyoko Inn, a staff member waved at me and handed me a note with the finishing time after I crossed. It was 21:19, only 11 minutes under the cut-off time. At the goal reception I presented my brevet card, the receipts from PC1 and PC2 (both 7-11 stores) and showed a photograph of the viewing platform. I had successfully completed! The young couple also made it. They arrived a mere 2 minutes before closing time. Another cyclist who had punctured on the last part of the ride in the rain was over the time limit.

On the drive back to Tokyo I stopped twice at Tomei expressway service areas for some rest, as I was too sleepy. When I got home I unloaded the car, took a shower and went to bed at 02:00. Two more weekends before the 360+ km Fleche ride for which I’m preparing.

Hydrogen Fuel Cell Cars Are Not The Future

On my bicycle ride last Saturday I passed a service station near Hachioji in western Tokyo that is being set up as a hydrogen station for fuel cell cars. Japan is in the process of setting up such infrastructure to support a small fleet fuel cell vehicles such as the Toyota Mirai (its name means “future” in Japanese).

For decades, hydrogen has been touted as an alternative fuel for transport once we move beyond fossil fuels. The idea was that it can be made in essentially unlimited amounts from water using electricity from solar, wind or nuclear power (from either fission or fusion reactors). The only tailpipe emission would be water, which goes back into nature.

Unlike electric cars, which have limited range compared to fossil fuel cars, hydrogen cars can be refilled fairly quickly, like conventional cars, giving them a longer operating range. Car manufacturers have experimented with both internal combustion engines (ICE) running on hydrogen and fuel cell stacks that produce electricity to drive a traction motor. Both liquefied and compressed hydrogen has been tested for storage.

Here is a Honda fuel cell car I photographed on Yakushima in 2009:

It’s been a long road for hydrogen cars so far. Hydrogen fuel cells were already providing electricity for spacecrafts in the Apollo missions in the 1960s and 70s. With the launch of production cars and hydrogen fuel stations opening now in Japan, the US and Europe it seems the technology is finally getting ready for prime time. However, the reality is quite different.

Arguably the biggest challenge for hydrogen cars now is not the difficulty of bringing down the cost of fuel cells or improving their longevity or getting refueling infrastructure set up, but the spread of hybrid and electric cars. Thanks to laptops and mobile devices there has been a huge market for new battery technology, which attracted investment into research and development and scaled up manufacturing. Eventually reduced costs allowed this technology to cross over into the automotive industry. The battery packs of the Tesla Roadster were assembled from the same industry standard “18650” Li-ion cells that are the building blocks of laptop batteries.

Li-ion batteries have been rapidly falling in price year after year, allowing bigger battery packs to be built that improved range. A car like the Nissan Leaf that is rated for a range of 135 to 172 km (depending on the model) would cover the daily distances of most people on most days without recharging during daytime. Not only are prices falling and range is increasing, the cars can also harness the existing electricity grid for infrastructure. A charging station is a fraction of the price of a hydrogen filling station.

Here in Japan I find many charging stations in convenience store parking lots, at restaurants, in malls and at car dealerships – just about anywhere but at gasoline stations, which is where the few hydrogen stations are being installed.

After the tsunami and nuclear meltdown hit Japan in March 2011, some people here viewed electric cars and their claimed ecological benefits with suspicion: The Nissan Leaf may not have a tail pipe, but didn’t its electricity come from nuclear power stations? This criticism is not entirely justified, because electricity can be produced in many different ways, including wind, sun and geothermal. Car batteries of parked cars are actually quite a good match for the somewhat intermittent output of wind and solar, because they could act as a buffer to absorb excess generating capacity while feeding power back into the grid when demand peaks. If cars were charged mostly when load is low (for example, at night) then no new power stations or transmission lines would have to be built to accommodate them within the existing distribution network.

The dark secret of hydrogen is that, if produced from water and electricity through electrolysis, it is actually a very inefficient energy carrier. To produce the hydrogen needed to power a fuel cell car for 100 km consumes about three times as much electricity as it takes to charge the batteries of an electric car to cover the same distance. That’s mostly because there are far greater energy losses in both electrolysis and in fuel cells than there are in charging and discharging a battery. A fuel cell car actually has all of the above losses, because even fuel cells still costing about $100,000 are not powerful enough to handle peak loads, therefore a battery is still required. Think of a hydrogen fuel cell car as a regular electric car with an added fuel cell stack to recharge the battery while the car is running. This means a fuel cell car suffers the relative small charge/discharge losses of a battery-electric car on top of the much bigger losses in electrolysis and fuel cells that only a hydrogen car has.

What this 3x difference in energy efficiency means is that if we were to replace fossil-fueled cars with hydrogen-fueled cars running on renewable energy, we would have to install three times more solar panels and build three times as many wind turbines as it would take to charge the same number of electric cars. Who would pay for that and why?

Even if the power source was nuclear, we would be producing three times as much nuclear waste to refill hydrogen cars than to recharge battery-electric cars — waste that will be around for thousands of years. That makes no sense at all.

So why are hydrogen fuel cell car still being promoted then? Maybe 20-30 years ago research into hydrogen cars made sense, as insurance in case other alternatives to petroleum didn’t work out, but today the facts are clear: The hydrogen economy is nothing but a boondoggle. It is being pursued for political reasons.

Electrolysis of water is not how industrial hydrogen is being produced. The number one source for it is a process called steam reformation of natural gas (which in Japan is mostly imported as LNG). Steam reformation releases carbon dioxide and contributes to man-made global warming. By opting for hydrogen fuel cell cars over electric cars, we’re helping to keep the oil industry in business. That you find hydrogen on the forecourt of gas stations that are mostly selling gasoline and diesel now is not a coincidence. Hydrogen is not the “fuel of the future”, it’s a fossil fuel in new clothes.

Due to the inefficiency of the hydrogen production it would actually make more sense from both a cost and environmental point of view to burn the natural gas in highly efficient combined cycle power stations (gas turbines coupled with a steam turbine) feeding electricity into the grid to charge electric cars instead of producing hydrogen for fuel cell cars from natural gas.

Even if electrolysis is terribly inefficient, by maximizing demand for electricity it can provide a political fig leaf for restarting and expanding nuclear power in Japan. Both the “nuclear fuel cycle” involving Fast Breeder Reactors and the promise of nuclear fusion that is always another 30-50 years away were sold partly as a power source for a future “hydrogen economy”.

While I’m sorry that my tax money is being used to subsidize hydrogen cars, I don’t think hydrogen as a transport fuel will ever take off in the market. Electric cars came up from behind and overtook fuel cell cars. The price of batteries keeps falling rapidly year after year, driven by massive investment in research and development by three independent powerful industries: IT/mobile, automotive and the power companies.

The hydrogen dream won’t die overnight. I expect the fuel cell car project will drag on through inertia, perhaps until battery electric cars will outnumber fossil fueled cars in Japan and only then will finally be cancelled.

Converting driver’s licenses in Japan

It was reported today that US actor Dante Carver, best known for his role as “oniisan” (elder brother) in popular Softbank Mobile commercials, has been reported to prosecutors in Tokyo for driving without a valid driver’s license. The 34-year old actor from New York reportedly was stopped for a traffic violation in July of this year and showed the police an International driver’s license (IDL), which was technically invalid as he is a resident of Japan. IDLs are only valid in Japan if you come here as a visitor, not if you live here. If you hold a Japanese Alien Registration card, as is required for any foreign national staying longer than 90 days, that applies to you.

Even though Mr Carver broke the law, I have some sympathy for him, because the law is anything but fair on this. Drivers from many countries can obtain a Japanese license if they have held a driver’s license for at least three months before moving to Japan, without having to take expensive driving lessons and a test as any fresh learner in Japan. However, this does not apply to drivers from the US. They do have to take a practical test in Japan again after already having passed a test in their home state. Americans are by far the most numerous nationality amongst Westerners living in Japan.

When I first arrived in Japan back in the 1990s, I was told by other foreigners that UK driver’s licenses could be converted without a test, but German licenses could not. Later I heard that this had changed and applied for a Japanese license, which was granted. I had to answer questions about how many driving lessons I had taken before the German test. They were particularly concerned about how long I had held the license in Germany before first coming to Japan. I needed to document at what date the license was issued, when I had visited Japan and when I had moved here. I even brought all my old, voided passports with entry and exit stamps for backup. It took two trips to the driver’s license centre to get it done. I can’t tell you how relieved I was to have it finally sorted out.

By contrast, when I moved to the UK, I simply mailed off my German license to some office in Swansea and received the UK equivalent by mail. It was equally easy to swap the UK permit back to a German one when I returned to Germany a few years later.

Others are not as lucky as Brits and Germans and do have to take the test. It seems ironic that people are allowed to drive in Japan on IDLs while they’re unfamiliar with Japanese roads, but after they’ve been here for a while and have more experience they’re no longer allowed to do that and are forced to retake a test.

Now you might think passing this test should be trivial for any experienced, safe driver. I would not bet on it, as a Japanese friend of mine found out to her cost. Japanese driver’s licenses have to be renewed every couple of years within a month of your birthday. When she moved to a different address in the same town she forgot to have her driver’s license updated with the new address. Consequently the post card to remind her of the upcoming renewal never reached her. Like most Japanese she mostly used her health insurance card for ID.

When she next looked at her license, she noticed the renewal date was more than 6 months in the past. She contacted the administration and was told the license she had held for more than a decade had irrevocably expired. It was like she had never passed the test. She would have to take a new test from scratch. Including driving lessons, this easily comes to 300,000 yen or more.

The tests are not what you would expect. For example, before you get into the car you must bend down and look underneath the car for rocks, cats, booby traps or whatever, otherwise you have already failed it. That’s just the start. Everything is totally exaggerated (not unlike Japanese manga or TV dramas, I might say πŸ˜‰ ). The tester would not give you directions such as “turn right at the next traffic light, then left at the intersection” as you go. Instead they would show you a map, tell you where you are and then ask you to drive them to a particular point. You’re supposed to memorize the route. It’s like they tested would-be taxi drivers! Of course you’re not allowed to look at the map again while you’re in motion. You can not pull into private property to make u-turns or to check the map if you get lost. Basically, the way to pass the test is to take many paid driving lessons around the same streets where the test will be conducted to thoroughly memorize the area.

It all has very little to do with road safety: Apparently the driver’s license administration and the tests are mostly staffed by former police officers in Japan. They retire from the police service before the age of 65 when they receive their full pension, serving in these other jobs for a couple of years. The more inflated the bureaucracy surrounding driver’s licenses, the more jobs for semi-retired police officers there are. Make it too easy to convert foreign driver’s licenses into Japanese licenses and some of these jobs might go.