Expiring the Internal Combustion Engine Car

The US state of Washington has decided to ban sales of new cars with internal combustion engines (ICE, gasoline or diesel) by the year 2030. That is five years earlier than in the state of California.

There are two issues to overcome for a switch to battery electric vehicles (BEVs): supply and charging. Two common worries however will not stand in the way of BEVs replacing ICEs: cost and range. Let me explain.

Battery cost per kWh has been dropping for decades and this trend is expected to continue. THis is highly significant: Most parts of a BEV car other than the big battery cost either the same as in an ICE car or they’re cheaper. As a result, the cost of batteries will stop being a major obstacle to adoption of BEVs years before the end of the decade.

The same is true for range. Cheaper batteries mean BEVs with more capacity will become affordable. The higher the capacity, the more km of charge can be replenished in a given number of minutes. For example, a Nissan Leaf with a 40 kWH battery will fast-charge from 0 to 80% in 40 minutes. The Volkswagen ID.4 First Edition with an 82 kWh battery (of which 77 kWh are usable capacity) will go from 5% to 80% charge in 38 minutes, essentially double the charging speed (kWh added per minute) for a battery with twice the range. If you can add hundreds of km of range in the time it takes you to use the toilet and get a cup of coffee then BEVs will be just as viable for long distance trips as ICE cars.

By the middle of this decade there is likely to be a wealth of different battery electric vehicle models on the market, with even BEV laggards such as Toyota, Honda and Subaru having joined in. Production could increase to about 50% of new sales of several large makers (e.g. GM, VW). It will have to scale up further, with the necessary increase in battery production capacity, by the end of the decade to make this happen but it seems eminently doable. Right now, the major bottleneck to ramping up production is not lack of demand but limited availability of battery cells. Every big car maker getting into BEVs will have to build Gigafactories churning out battery packs, or team up with battery makers who make these huge investments.

The more BEV there will be on the road, the more the impact on the electric grid becomes an issue. If you have a car that can cover 300 km or more on a full battery and you can charge at home every night then most likely you will almost never have to seek out a charging station, unlike drivers of ICE cars who regularly will have to fill up at a gas station. BEVs parked in a driveway or garage with a nearby wall socket are much easier to accommodate than cars currently parking in the street or on parking lots, who will require capacity at paid public charging points, which are more likely to be used at daytime. The grid has plenty of capacity for off-peak charging (e.g. overnight), but if a lot of people want to do their charging at superchargers or other fast charging points, this could require an upgrade in generating and transmission capacity to cover a higher daytime peak load. Vehicle to grid technology would help to make this more manageable, as cars sitting idle in a driveway could provide spare power for the few cars doing the odd long distance trip.

In any case, I see a date roughly around 2030 as the Goldilocks target for a phase-out of ICE-powered new cars. For high income countries this goal is neither too unambitious nor too unrealistically aggressive. Japan’s goal by contrast for a phase-out by the mid-2030s that still allows hybrid ICEs like the Toyota Prius after that date is quite unambitious. By setting the bar that low, prime minister Suga pleases Toyota, as expected, allowing it to keep selling dated technology in Japan that they will no longer be able to sell elsewhere. That puts Japan in the company of developing countries, which will most likely continue using ICE cars exported from rich countries for years to come.

The sooner rich countries switch to BEVs, the shorter the long tail of CO2-emitting ICE cars still running in poorer countries will be.

Test-driving a Tesla Model 3 in Tokyo

Recently my son Shintaro and I went to the Tesla showroom in Aoyama, Tokyo to take a Tesla Model 3 for a test drive. I wanted to see for myself how this electric vehicle compared to my almost 12 year old Prius hybrid and to be able to compare it to future EVs from other brands that we may eventually consider.

I’d noticed an increasing number of Teslas around Tokyo, though they’re still far rarer than around the San Francisco bay area. Given that much of Japan is densely populated, range anxiety (an often cited reason for slow electrification) should be less of an issue here compared to the US, particularly with cars that already have over 400 km of range.

I love the practicality of the rear hatch of my Prius that allows me to carry two road bikes without disassembly by simply folding the rear seats. The Tesla Model 3 has a much less accessible trunk, which pretty much rules it out for me. The Model Y will be more practical, but is also even bigger. Apparently it won’t be available in Japan until a year or two after it starts shipping in the US this month (March 2020).

Tesla’s models are quite large by Japanese standards, with implications for parking and for driving on narrow back streets. For example, these are the dimensions of the Tesla Model 3 vs. the current generation Toyota Prius (XW50):

Length: 4690 / 4570 (+120 mm)
Width: 1850 / 1760 (+90 mm)
Height: 1440 / 1470 (-30 mm)

Exact numbers for the Model Y aren’t available yet, but it’s expected to be about the same width but about 1600 mm tall (160 mm taller than the Prius).

The test drive was an unusual experience by Japanese standards. Somebody had mentioned that the dealer experience with Tesla is more like visiting an Apple store than a traditional dealer showroom. I’d say the difference was even greater.

Customer service expectations in Japan are incredibly high and that is probably one factor for Tesla’s relatively sluggish sales here, see a recent Japan Times article.

Shintaro had tried to make the reservation online and was promised a callback within 48 hours, but that never happened so he had to call again to fix up an appointment.

Even when I take my Prius to an oil change at a local gas station, I’ll be served a cup of coffee while I wait. By contrast, when we visited the Tesla showroom to evaluate a JPY 5,100,000 (USD 48,000) car, all we received was a business card of the sales person. They don’t even give you paper brochures. You can look it all up on the website, right?

Before the test drive they took photo copies of our drivers licenses. We were instructed not to take any pictures and to follow the rules of the road. We would be liable for any incidental damage to the car during the test drive. Then we got into the car parked by the roadside outside the showroom, first as passengers, then later taking turns driving it around Akasaka.

I liked the seats, which were nice and firm. The acceleration when you put your foot down is amazing. It feels like a big car but with enough power for its weight. Getting back into the Prius later, it felt quite light by comparison, by which I don’t mean acceleration but it simply feels like a lot less metal being moved around. It tips the scales at about 280 kg less than the base Model 3 (1335 kg vs. 1612 kg).

Some of the controls took some getting used to, such as the lever action of the indicator stalk (which is on the left unlike in Japanese cars) or putting the car into park or into drive with the right stalk. Much of the demonstration involved showing the use of the center screen and its user interface. Many of the functions of the car, such as the electrically assisted steering or the regenerative breaking can be tweaked there, to change the feel of the car.

Headroom in the Tesla was good but personally I don’t much care for the glass roof. In a roll-over accident I would feel safer with a steel roof, but maybe those are not so likely with the low center of gravity afforded by the floor-based battery. The car interior felt overheated when we got into it and no fan was blowing, but I only asked about fan control towards the end of my driving portion. In any other car I would have easily figured it out on my own.

Checking out the trunk and the “frunk” (front trunk) after we got out of the car, the limited access for bulky luggage from the rear was quite a contrast to our Prius, in which we regularly move large items from a DIY center or bicycles for cycling tours far from Tokyo. The Model Y will address that, but it’s also 160 mm taller than the Prius on top of being 90 mm wider like the Model 3. That’s more air resistance and more kWh used to overcome it. That’s one thing I love about the Prius, it offers all this interior space despite being compact and efficient on the outside. 🙂

The width would already make a Model 3 or Model Y a very tight fit in our driveway. We would also have to figure out if there’s enough clearance around the car to plug in the charging cable for overnight charging.

In summary, Tesla’s range of cars is not an easy sell for me as a Japanese customer. While they have great technology, some of the design choices are not a good fit for Japan and the customer experience when dealing with the company (especially given the price range) will not match a lot of cultural expectations.

UPDATE (2020-03-19):

Size information has finally been released for the Model Y. These are the exterior dimensions compared to my current Prius:

Length: 4751 / 4570 (+181 mm)
Width: 1921 / 1760 (+161 mm)
Height: 1624 / 1470 (+154 mm)

Given the width and height it looks like it has roughly 20% more frontal area than the Prius which will impact its air resistance and hence energy usage at freeway speeds.