Tokyo in a power crunch

On March 22, 2022 the Tokyo Electric Power Corporation (Tepco) warned electricity consumers in east Japan about the risk of rolling blackouts from a tight supply situation. The recent M7.3 quake near Sendai had knocked several of Tepco’s thermal power plants offline, which left the company in a difficult situation when a cold spell with snow flakes hit the region of the capital. Demand at times exceeded generation capacity and only the availability of pumped hydro storage saved the day before measures to curb demand such as turning down heating and switching off lights averted an outage.

No doubt this experience will increase pressure to restart more nuclear power stations that have been shuttered since the tsunami and nuclear meltdowns in Fukushima in March 2011. Before the nuclear disaster about 30% of Japanese generating capacity were nuclear; now only about 10% comes from restarted nuclear reactors. The current high prices of natural gas will further enhance the attraction of nuclear, at least in the eyes of anyone whose financial interests are tied to the balance sheet of the utility companies, such as their individual and institutional shareholders.

However, that is not the whole story.

While eastern Japan was in a power crunch, western Japan has ample spare capacity, as did Hokkaido. Why could this power not be used in Tokyo? You would have thought Japan would have learnt its lesson from the 3/11 disaster in 2011 and addressed it in the decade since then, but you would be wrong: Japanese electricity markets are still split between a handful of regional near-monopolies with minimal interchange capacities between them. For example, the Hokkaido grid has a generating capacity of 7.5 GW but only 0.6 GW of interchange capacity with Honshu (8% of the total). Tepco supplies up to 47 GW to customers in its area but can only exchange up to 1.2 GW with major utilities in the west of Japan. This leaves little margin when earthquakes or weather events with a regional impact hit supplies.

By contrast, China has built huge high voltage direct current (HVDC) transmission lines between the industrialized coastal cities on one side and hydroelectric power stations near the Tibetan plateau and solar and wind farms in the arid north on the other. Many of these lines are longer than the distance from Tokyo to Hokkaido, let alone Tokyo to Kansai. The Chinese government understands that if it wants to wean itself from the dependence of dirty coal or imported oil and gas then it will need to vastly increase power transfer capacity from the interior of the country where renewables are available to the densely populated urban areas near the coast lines.

Japan is actually in a similar situation. The elephant in the room that nobody wants to talk about is offshore wind. While European countries and the US are building up tens of Gigawatts of offshore wind power capacity, Japan has very little installed capacity, particularly offshore. The entire conversations seems to be about nuclear vs. solar vs. gas vs. coal, leaving out one of the most promising renewable energy sources available to Japan. So far the regulatory hurdles for erecting and connecting wind turbines in Japan have been high and that has left wind as an also ran compared to much more widely deployed solar. However, solar does not provide power at all hours. Wind would complement it.

Much of the European wind power capacity is installed offshore where wind speeds tend to be high and more consistent than onshore. This is where the largest and most economical turbine models tend to be used. By contrast, almost 99% of Japan’s wind power capacity is still onshore. A cumulative total of only 51.6 MW of offshore wind capacity was installed at the end of 2021 while total installed wind power capacity was 4.6 GW. Meanwhile the UK had 24.7 GW of wind power capacity, Spain 27.1 GW and Germany 62.2 GW. China is in a league of its own with 282 GW, more than all of Europe combined. Japan’s installed wind power base is less than that of small European countries such as Belgium (4.7 GW) that have relatively short coast lines and tiny EEZs: Japan’s EEZ of 4,479,388 km2 is over 1000 times larger than Belgium’s at 3,447 km2!

Japan is really only starting to build up offshore wind capacity, with projects off the coasts of Akita, Chiba and Nagasaki getting under way in the last two years. By 2030 its goal is for 10 GW of offshore capacity either installed or under construction which is still tiny compared to the already installed base of Germany, Spain or the UK.

Unlike fossil fuel or nuclear power stations, wind turbines are not location independent. They will be installed where wind conditions are favourable, where the sea is not too deep and connections to the coastal grid are cost-effective. To make the most of the wind conditions, the grid will need to be greatly expanded to allow large amounts of power to be transferred from regions with plenty of wind to regions with many consumers. This will be quite different from the current model where utility companies try to generate all the power they need within their own region, which is why there is only limited interchange capacity to help out if one company loses a large part of its generating capacity as happened in the recent quake or after 3/11.

Japan needs to start building high capacity long distance HVDC power lines like China has in order to enable a transition to zero carbon electricity. The fragmented power markets dominated by local utility companies are an obstacle to this transition as the interests of the regional companies seeking profits from existing investments in their area are not aligned with the interests of the consumers who want reliable green energy regardless of where it comes from.

Japan quickly needs to remove regulatory obstacles to expanding wind power and then invest to build a HVDC backbone to connect renewable power generation with consumers.

Hokkaido wind power for Japanese energy

Nikkei reports (“Japan pushes for undersea cables to solve wind power puzzle”, 2022-01-02) that the government is allocating 5 billion yen (about US$43 million) in its supplementary budged for a feasibility study for a 4 GW high voltage direct current (HVDC) link between the power grids of the northern island of Hokkaido and the main island of Honshu, where most of Japan’s population lives. This would be by far the biggest HVDC link ever built in Japan. The Japanese government wants to generate 45 GW of power from offshore wind in 2040, up to about a third of which (14.65 GW) is to be produced in Hokkaido. The development plan lists several promising offshore areas along the southwest coast of Hokkaido.

For this power to be available to consumers outside the northern prefecture, it would need to be exported via a HVDC link. This is the preferred technology for shifting large amounts of power over long distances, especially between AC grids not synchronized with each others or operating on different frequencies. Since 2019 there have been two 300 MW HVDC links between the two islands. Their combined capacity is to be doubled to 1.2 GW by 2028.

Japan has relatively little capacity for transferring power between its regional grids. This is because its grids used to be operated by regional monopolies that had little incentive to ever import or export power. This lack of interconnect capacity became a major problem following the power shortage after the 2011 Tohoku earthquake and tsunami when less affected areas could not help out the most affected region. There is a conflict of interest between the local utility companies and the country as a whole. Tepco owns a lot of nuclear power stations, expensive infrastructure with huge sunk costs. It would rather generate power from these plants than pay another supplier from outside its area for renewable energy. However, many of these power stations have yet to be restarted since their shutdown following the Fukushima meltdowns. By restricting how much power can be imported from other grids, Tepco can put pressure on regulators to allow it to restart more reactors to ensure a stable supply of power. On the other hand, expanding interconnect capacity would ease the pressure. Which side will the Japanese government take?

A related issue is the variable output of renewable power sources. Long distance transmission will make it easier to compensate for local weather patterns by shifting power between different regions, which allows a larger share of renewable energy to become part of the mix without having to resort to either energy storage or peaker plants (e.g. gas turbines to cover peak loads). That again means Tepco loses leverage to maintain coal and other fossil fuel powered generating capacity as insurance against shortfalls of renewable energy.

China, one of Japan’s main economic rivals in the world, has pursued a completely different course. Over the past decade it has aggressively expanded long distance HVDC links to stabilize its grid. Japan operates a single HVDC link of at least 1 GW, a 1.4 GW link between Honshu and Shikoku that started operating in 2000. All other links are only in the several 100 MW range and most of those are not long distance lines but back-to-back local interconnects, for example between the 50 Hz grid of eastern Japan and the 60 Hz grid of western Japan near Nagoya. By contrast, China has built over 20 HVDC links over 1 GW, mostly with a capacity of 3 GW or more. Many of the biggest projects cover distances of 1,000 to 2,000 km. This allows China to supply it coastal megacities with hydroelectric power from its southeastern mountains or from other power sources from its arid central parts. China is the world leader in wind power. Its windiest parts are along its border to Mongolia and on the Tibetan plateau. Large scale HVDC is key to China’s energy policy for the 21st century.

An alternative to shifting power long distance is to use it to locally generate hydrogen from water (“green hydrogen”) and feed it into pipelines or use it to make ammonia. This makes some sense for applications that already use hydrogen, such as the fertilizer industry or for carbon free alternatives to existing technology, such as direct reduction of iron ore for steel making without using coking coal. However, it makes little sense to use green hydrogen for power generation: if you convert electricity to hydrogen which you then use to generate electricity, more than 70 percent of energy is lost in the process while less than 30 percent remains. By contrast, batteries are 90 percent efficient. Therefore, if excess wind or solar power is used to produce hydrogen, that resource should best be used by industries that directly consume hydrogen, until all fossil fuel currently used for such purposes has been replaced.

If Hokkaido had a surplus of hydrogen from wind power, it would make more sense to have it consumed by steel works and fertilizer plants built in the prefecture rather than sending it through a pipeline to Honshu.

Although green hydrogen or ammonia can be used as fuel in thermal power plants in place of coal or LNG, it would be a terribly wasteful use. Because of the huge conversion losses, we would need three times more wind or solar power to end up with the same amount of usable electricity than if we used grid-scale battery storage to absorb any surplus and make it available when needed. This advantage makes grid-scale battery storage a strategic technology.

Most existing Li-ion batteries depend on relatively scarce resources such as cobalt, nickel and lithium. Lithium-iron-phosphate (LFP) batteries only require lithium and widely available materials, while sodium ion batteries use only readily available raw materials. Japan will need to invest in high capacity long distance HVDC links as well as in battery storage to speed up its transition to a carbon neutral economy.

Toyota Hydrogen Combustion Engine Cars

Since 2014 Toyota has sold a little over 10,000 Toyota Mirai, a hydrogen fuel cell vehicle (FCV). The starting price of this 4 seat sedan model in Japan is about 7.1 million yen (currently about US$63,000) which is more than 50% more expensive than a battery electric Tesla Model 3 which seats 5 adults. And it seems unlikely that Toyota can make a profit on a car being made in such small numbers as the Mirai, unlike Tesla does with the cars it makes in large numbers in its plants on three continents.

Tesla sold about half a million battery electric vehicles (BEVs) last year and looks set to sell somewhere between 900,000 and 1 million cars in 2021. This means Tesla will have sold twice as many BEVs every week in 2021 than the total number of FCVs Toyota has sold since 2014. The sales gap between BEVs and FCVs is getting bigger and bigger.

Recognizing that the high cost of fuel cells makes it difficult to compete, Toyota has announced that it sees a market for cars with internal combustion engines (ICE) that burn hydrogen instead of gasoline. They should be cheaper to make than fuel cell cars and will not produce any CO2 if hydrogen is made from non-fossil energy sources.

It’s not a novel idea though. BMW tried it in its BMW Hydrogen 7 technology carrier based on its 7-series back in 2005-2007. It never went anywhere. Besides the absence of a fuel supply network, there were also issues with emissions. Hydrogen flames burn extremely hot, which means you end up with a lot of smog-forming NOX emissions — worse than diesels.

In terms of efficiency, hydrogen ICEs are worse than FCVs which are much worse than BEVs. While BMW used cryogenic tanks with liquefied hydrogen at -253 °C, Toyota most likely will use high pressure tanks like in its Mirai for its hydrogen ICEs. They hold hydrogen gas at pressures of up to 700 bar. Both liquefaction and compression require huge amounts of electricity that can not be used for propulsion but is effectively wasted. An FCV consumes three times more electricity for electrolysis to make the hydrogen fuel it consumes than a BEV uses to charge a battery to drive the same distance. A hydrogen combustion engine is even less efficient. Where will this hydrogen come from? We don’t currently have a surplus of solar panels or wind turbines to produce this electricity. That means a hydrogen economy will need significantly larger investments in renewable energy than with battery vehicles. Hydrogen for cars makes no economic sense whatsoever.

It makes even less sense for hydrogen ICEs than for hydrogen FCVs. Fundamentally, it’s no more than an excuse for not giving up on building internal combustion engines, pretending that nothing has changed even in a world that is facing climate change that we need to address as soon as possible.

I am afraid Toyota will not make a turn-around and face the reality that the industry is switching to BEVs within the shortest time possible until it replaces Toyoda Akio, its current company president. Mr Toyoda is the grandson of the founder of the company and a keen race car driver. He lacks the vision that Toyota will need in the transition to a carbon free future. Mr Toyoda needs to retire, along with the dead-end technologies he is committed to.

METI and Japan’s exit from the Carbon Economy

On the eve of COP26, the UN Climate Conference in Glasgow, Scotland, the Japanese government took out a full page ad in the Japan times to talk about “beyond zero”, a series of events and initiatives related to Climate Change. It struck me that none of them were specifically about renewable energy, the essential ingredient for a carbon-free economy.

The title of “Tokyo Beyond Zero Week” already had me confused: It reminded me of the Toyota bZ4x, a battery electric SUV that is the first mainstream battery electric vehicle for the Japanese market that Toyota has announced. Toyota has become notorious for bucking the Battery electric trend by plugging hybrids and hydrogen fuel cells, despite hydrogen fuel from renewable sources being 3 times less energy-efficient than battery electric vehicles. The bZ4x is too little, too late when Toyota is telling potential customers that they should really be buying hybrids like the Prius or hydrogen fuel cell vehicles like the Mirai.

METI, the Japanese Ministry of Economy, Trade and Industry has been sponsoring vehicles based on hydrogen fuel cells using hydrogen made from Australian brown coal (lignite), with the resulting CO2 emissions sequestered using “carbon capture and storage” (CCS) and the hydrogen shipped to Japan in cryogenic tank ships developed by Japanese shipyards with METI funding. Essentially it’s a massive pork barrel project, designed to pay industry players to go along with a Rube Goldberg project that will not be economically viable. It’s a way of keeping ecological laggards such as Toyota and the huge Japanese shipbuilders and trading companies relevant. Some of the initiatives sponsored by METI are:

  • LNG (Liquified Natural Gas) Producer-Consumer conference
  • International Conference on Carbon Recycling
  • International Conference on Fuel Ammonia

There is no place for LNG in a zero carbon economy. “Carbon Recycling” aka CCS is a fig leaf to keep burning fossil fuels. Ammonia may be a necessary fuels for ships and airplanes, but if it’s made from coal it won’t be green energy.

Why is the METI ad not talking about offshore wind and geothermal power, two of the most important energy sources for green baseload electricity? It’s because they are primarily concerned about creating and maintaining business opportunities for Toyota, trading companies making profits from fossil fuel imports and other companies wedded to the fossil fuel industry and not about how to get Japan ready for the zero carbon age.

I find this very sad. As a country with limited fossil fuel resources, Japan could become a prime player in the post-carbon era, developing new technologies to help other countries move beyond fossil energy sources. Japan has huge opportunities in offshore wind, onshore wind, solar and geothermal but its government has been largely turning a blind eye to them because those energy sources can not be controlled by its big trading companies. Likewise, its biggest automobile manufacturer is a laggard in battery electric vehicles which is determined to sabotage the switch to BEVs.

The TerraPower Natrium Reactor – a Quick Review

TerraPower, a company funded by billionaire Bill Gates, has teamed up with several partners to build a demonstration nuclear power station in Wyoming by the end of the decade. Several sites are under consideration. The plan is to re-use the grid connection of a former thermal coal power plant, of which Wyoming has many.

The Natrium reactor developed by TerraPower in cooperation with GE Hitachi Nuclear Energy is quite a departure from the design of the light water reactors (LWRs) that produce the bulk of nuclear power worldwide today. For one, its output is highly variable because it incorporates gigawatthour (GWh) energy storage using tanks of molten salt. The design is quite innovative, which creates both upsides and challenges.

After reviewing the company’s website and watching a webinar, I am quite impressed but also concerned. The reactor will still run on uranium and will produce radioactive fission products that will need to be contained and stored safely for thousands of years. This is still a largely unsolved problem. Countries that have been generating power from nuclear fuels are today sitting on thousands of tons of waste kept in intermediate storage, still without a proven long term storage solution. Eight decades since the start of the “atomic age” with the Manhattan Project that gave us nuclear reactors and atomic bombs we are only now seeing the first permanent storage site being used in Finland. Some consider this the Achilles heel of the nuclear industry. Proponents of nuclear power will argue that, given we already have existing waste, this is a problem we will need to address anyway and that the volume of highly active nuclear waste will remain relatively compact. Nevertheless, there is a lot that can go wrong there, especially if the volume keeps increasing.

What most excited me about the reactor concept was its incorporation of the heat store using molten salt tanks, which it borrowed from concentrated solar power (CSP). Everything from the molten salt tank to the grid connection is basically the same as in this type of solar power plant. The major difference is that the heat source is not solar power focused onto a tower by thousands of mirrors but an underground nuclear reactor. This means the designers could use existing technology developed to maturity over the last 2-3 decades for use in solar projects in Nevada, Australia, Morocco and other locations.

This part of the plant is conventional technology that will not be subject to the same regulatory oversight as the nuclear portion, making it easier and cheaper to build. At the same time, the nuclear portion of the plant is much smaller and simpler, requiring a lot less concrete and steel than in a LWR per MW of output capacity.

By incorporating the heat storage, the electrical output of the power station can be varied considerably – the TerraPower presentation showed a range of about 240 to 500 MWe, with 345 MWe available continually without charging or discharging the heat store. Output that varies by 100 percent roughly covers the demand swing between day and night in many power markets. If combined with solar and wind, the stored heat can be used to smooth out fluctuations in power output from those natural energy sources. Heat from the power station may also have applications for desalination, industrial processes and residential heating.

Conventional nuclear power stations such as PWRs or BWRs can not vary their output very much. They basically can only run at 100 percent load or be switched off. Once shut down, bringing them back up again takes a very long time. That makes them suitable only for base load but not for demand peaks such as in the afternoon or evening. For that they would have to be combined with energy storage such as pumped hydro, opportunities for which are limited by geography. Due to the literally built-in output flexibility of the salt storage system, a zero carbon grid could theoretically incorporate a lot more Natrium output capacity than would be possible with existing LWRs. From an economic point, it means the operators in a competitive electricity market with bidding for supplies can sell more power at lucrative peak prices instead of having to try to find buyers at night when demand and prices are low.

So what’s the catch? The nuclear reactor itself is a sodium-cooled fast reactor (SFR), basically a Fast Breeder Reactor (FBR) without the breeding: Except for the absence of a breeding blanket made of depleted uranium that slowly turns into plutonium, the technology is very similar. Perhaps you remember the Monju reactor in Fukui, Japan that was shut down after a major accident in 1995. The operators attempted to hide the extent of a coolant leak and fire, which led to a 15-year shutdown. After a second accident in 2010 the reactor was eventually decommissioned. In 1966 the prototype Fermi 1 FBR in Monroe, Michigan suffered a partial meltdown. It was permanently shut down in 1972. Several other sodium-cooled fast reactors have been built around the world, such as the French Superphénix, the Prototype Fast Reactor in Dounreay, Scotland and the SNR-300 in Kalkar, Germany. All of the above have since been shut down due to high costs or troubles or, like the one in Kalkar, were never even started up.

While sodium has a high temperature range between melting and boiling point and is a good heat conductor, it also reacts violently with water and oxygen. Naturally, you can not put out a sodium fire with water. Normally the top of the reactor vessel is filled with an inert gas such as argon to prevent sodium fires but it needs to be opened for loading and unloading fuel, during which time the sodium has to remain heated above its melting point. You do not want to start a fire then.

If an LWR overheats, steam bubbles will form that reduce the criticality, interrupting the chain reaction. By contrast, control of the chain reaction in SFRs depends 100 percent on positioning of the control rods.

While the cooling pipes will not have to withstand high steam pressures as in a BWR, they will be subject to thermal stress: The coolant temperature in an SFR is much higher, around 550 deg C (1020 F) which is basically red-hot and hot enough to melt some aluminium alloys (and of course salt, for the heat storage). When SolarReserve decided to build a molten salt CSP solar power station in Nevada, it turned to Rocketdyne to make some of the metal parts, because of their metallurgical expertise in rocket engine nozzles that are also exposed to high temperatures.

There are other viable solutions for base load in a zero carbon grid, such as geothermal power, utility scale battery storage, thermal storage using rock heated electrically with surplus wind and solar or green hydrogen powering fuel cells or gas turbines. Costs for wind, solar and battery storage have been falling rapidly for years. Once renewables are cheap enough, you can partially address issues of intermittent output by overbuilding capacity and simply idling some of it when not needed. Or you can use spare output when supply exceeds demand to produce hydrogen, for making ammonia and for use by the steel industry.

Some of these solutions depend more on geography than the Natrium reactor, which can be installed on any continent and provide power at time of day and in any season. However, it would definitely need to be safe and reliable. Ultimately, this new technology will first have to prove itself.

Expiring the Internal Combustion Engine Car

The US state of Washington has decided to ban sales of new cars with internal combustion engines (ICE, gasoline or diesel) by the year 2030. That is five years earlier than in the state of California.

There are two issues to overcome for a switch to battery electric vehicles (BEVs): supply and charging. Two common worries however will not stand in the way of BEVs replacing ICEs: cost and range. Let me explain.

Battery cost per kWh has been dropping for decades and this trend is expected to continue. THis is highly significant: Most parts of a BEV car other than the big battery cost either the same as in an ICE car or they’re cheaper. As a result, the cost of batteries will stop being a major obstacle to adoption of BEVs years before the end of the decade.

The same is true for range. Cheaper batteries mean BEVs with more capacity will become affordable. The higher the capacity, the more km of charge can be replenished in a given number of minutes. For example, a Nissan Leaf with a 40 kWH battery will fast-charge from 0 to 80% in 40 minutes. The Volkswagen ID.4 First Edition with an 82 kWh battery (of which 77 kWh are usable capacity) will go from 5% to 80% charge in 38 minutes, essentially double the charging speed (kWh added per minute) for a battery with twice the range. If you can add hundreds of km of range in the time it takes you to use the toilet and get a cup of coffee then BEVs will be just as viable for long distance trips as ICE cars.

By the middle of this decade there is likely to be a wealth of different battery electric vehicle models on the market, with even BEV laggards such as Toyota, Honda and Subaru having joined in. Production could increase to about 50% of new sales of several large makers (e.g. GM, VW). It will have to scale up further, with the necessary increase in battery production capacity, by the end of the decade to make this happen but it seems eminently doable. Right now, the major bottleneck to ramping up production is not lack of demand but limited availability of battery cells. Every big car maker getting into BEVs will have to build Gigafactories churning out battery packs, or team up with battery makers who make these huge investments.

The more BEV there will be on the road, the more the impact on the electric grid becomes an issue. If you have a car that can cover 300 km or more on a full battery and you can charge at home every night then most likely you will almost never have to seek out a charging station, unlike drivers of ICE cars who regularly will have to fill up at a gas station. BEVs parked in a driveway or garage with a nearby wall socket are much easier to accommodate than cars currently parking in the street or on parking lots, who will require capacity at paid public charging points, which are more likely to be used at daytime. The grid has plenty of capacity for off-peak charging (e.g. overnight), but if a lot of people want to do their charging at superchargers or other fast charging points, this could require an upgrade in generating and transmission capacity to cover a higher daytime peak load. Vehicle to grid technology would help to make this more manageable, as cars sitting idle in a driveway could provide spare power for the few cars doing the odd long distance trip.

In any case, I see a date roughly around 2030 as the Goldilocks target for a phase-out of ICE-powered new cars. For high income countries this goal is neither too unambitious nor too unrealistically aggressive. Japan’s goal by contrast for a phase-out by the mid-2030s that still allows hybrid ICEs like the Toyota Prius after that date is quite unambitious. By setting the bar that low, prime minister Suga pleases Toyota, as expected, allowing it to keep selling dated technology in Japan that they will no longer be able to sell elsewhere. That puts Japan in the company of developing countries, which will most likely continue using ICE cars exported from rich countries for years to come.

The sooner rich countries switch to BEVs, the shorter the long tail of CO2-emitting ICE cars still running in poorer countries will be.

Germany Reaches Renewable Energy Milestone

The drop in demand for electric power due to the Covid-19 pandemic helped Germany reach an environmental milestone in 2020: For the first time more electricity from renewable sources was fed into the German grid than from fossil fuels and nuclear combined.

50.5 percent of the net electricity production came from wind, solar, hydro and biomass vs. 49.5 percent from fossil or nuclear. Wind power alone accounted for 27 percent of all electricity, more than brown coal and hard coal combined (24.1 percent).

2020 numbers for Japan are not yet available, but in 2017 renewables excluding hydro power accounted for only 8.1 percent of the Japanese electricity production, with hydro providing another 7.9 percent. 39.5 percent came from LNG, 32.7 percent from coal 8.7 percent from oil and 3.1 percent from nuclear.

Japan’s power generation plan for FY2030 foresees only 1.7 percent for wind power, 7 percent for solar and an overall share for renewables (including hydro power) of 22-24 percent of the total. That is less than half the share that Germany achieved in 2020, a whole decade before Japan.

Toyota is yielding the future to Tesla and other EV makers

In October 2019, Toyota along with General Motors and Fiat Chrysler sided with the Trump administration in its effort to strip the state of California of its ability to set tighter vehicle emission standards than set by the Federal government. In July 2019, several other car makers including Ford, Honda and Volkswagen had sided with California.

This seemed a very odd move for a company whose iconic Prius hybrid was once seen as a way for people ranging from middle class families to Hollywood stars to show their green credentials. Toyota seems on the wrong side of history now.

I also drive a Prius which I bought almost 12 years ago. When it came out, it was way ahead of everything else: Three times as fuel efficient but more spacious and more reliable than my Audi. It wowed me when I first saw one and later when I first test-drove a friend’s. As an engineer I appreciated the clever technology behind it and as a family man I could rely on it for affordable transport.

However, if I were to buy a car now, I’d have a hard time making up my mind. If Tesla had designed its Model 3 as a mid-size hatchback (like the Prius) instead of giving it a trunk, the choice would be easy. Tesla seems set to address that criticism with its forthcoming Model Y, which will be like a slightly larger hatchback version of the Model 3. If Toyota had redesigned its Prius as a battery electric vehicle (BEV) with at least 300 km of range, the choice would have been even easier. The problem is, Toyota isn’t going to do that and I think I understand why.

I have talked to Toyota dealer sales representatives who came to sell me a new Toyota and when I mentioned about electric vehicles, they kept telling me the time wasn’t ripe for that yet, that infrastructure was too spotty and range too short. I would be better off getting another hybrid as the next car. And Toyota has many hybrid models.

This is precisely the problem: Toyota kept enhancing the hybrid drivetrain of the Prius, improving fuel economy with every new version. Now many different models, from the Toyota Aqua / Prius C to the Corolla Hybrid to the JPN Taxi basically all use the same family of engines, gearbox, battery, inverter and other electric systems. This has kept development costs low and maximized economic gain from the numerous patents that Toyota has received for the Prius.

Meanwhile, Tesla appeared on the scene as a complete outsider and took a radically different approach. By going for an all-electric drivetrain they don’t need an Atkinson-cycle internal combustion engine (ICE), an electrically controlled planetary gear transmission and many other mechanical parts that make the Prius family unique. They just need a bodyshell, an electric motor/generator, inverter and battery. For the first models the battery was basically built up from the exact same “18650” cells that power laptops and the bodyshell for the Tesla Roadster was bought in from Lotus.

Batteries for the automotive market are made by specialized suppliers such as Panasonic and LG instead of being based on in-house designs and intellectual property such as ICEs or gearboxes. Motor/generators and inverters are much simpler and less proprietary than ICEs. The basic technology for inverters used in BEVs and the electric part of hybrid drivetrains has been around since before the 1960s. Toyota engineers got the inspiration from the electrical systems used in bullet trains (shinkansen) that launched before the 1964 Tokyo Olympics.

If current owners of conventional or diesel cars replace their aging vehicles with hybrids then Toyota and its stable of Prius and cousins will do very well. If people however take a good look at the ecological realities of the 2020s and beyond, they will see that the sooner we can stop pumping more CO2 into the atmosphere, the less catastrophic our future will be on this planet. If we still drive cars, they will have to run on renewable energy sources, which hybrids can’t do (except plug-in hybrids for relatively short distances).

This raises a second issue: Toyota has been betting on hydrogen as the fuel of the future. Its Toyota Mirai runs on compressed hydrogen (H2), which is converted into electricity in an on-board fuel cell. This gives it a range of about 500 km between refuelling.

If Toyota were to sell BEVs with ranges of 300-450 km, this would undermine the rationale for hydrogen cars which need a completely new infrastructure for refuelling. Each H2 station costs millions of dollars and the fuel is expensive.

The most economical way of making hydrogen is from natural gas or coal, which releases greenhouse gases. Though one could make hydrogen through electrolysis (splitting water into hydrogen and oxygen using electricity), because of inefficiencies inherent in this process, this would actually consume about three times more renewable electricity than covering the same distance by charging/discharging a battery. This is why hydrogen will ultimately remain an automotive dead end.

What hydrogen technology basically gives Toyota is a political fig leaf: They can claim to have a path into a carbon-free future that does not rely on batteries (like Tesla and others). Using that fig leaf they think they can keep selling cars that burn gasoline, in California and elsewhere. Perhaps they can hold off moving beyond hybrids for years and years to come. If they can keep selling what they’ve got they may make healthy profits in the short term, but for the sake of the planet I hope this plan won’t work.

I’ve seen this movie before. In the 1990s Sony launched its MiniDisc (MD) player as a replacement for analog audio tapes and recordable alternative to digital Compact Discs (CDs). Then, in the late 1990s MP3 and flash memory came along: smaller, cheaper, more simple. The whole strategy fell apart. Sony could have accepted that MP3 was a superior solution, but that would have then put them on a level with every other audio consumer product maker. Their patents on MD would have become worthless. So they struggled on with trying to promote MD until they eventually had to kill it. From the inventor of the iconic Sony Walkman that had created a whole new market and sold the brand name to billions of consumers, Sony turned into a company that had lost its way. It let newcomers such as Apple with its iPod (which soon morphed into the iPhone) take over the market and consumer mindshare. The rest is history.

So if you’re listening, Toyota: Please build a car as spacious, practical and reliable as the Prius, but without a hybrid drivetrain that still releases CO2 with every km driven. Make it a no compromise battery electric vehicle. Support vehicle-to-grid technology, in which parked cars have an important role to play for stabilizing the electrical grid. Instead of working with fossil fuel companies to turn fossil fuel into hydrogen for thousands of yet to be built H2 filling stations, support expanding renewable power production from solar, offshore and onshore wind, geothermal and large scale storage, which is what we will need for a carbon-neutral future.

Meanwhile, when the time comes to replace my 12 year old car I will look at all the battery electric hatchbacks on the market then. If there is no Toyota amongst them then my next car will not be a Toyota. It’s as simple as that.

The Runway to Hell

Even four years after the Paris climate agreement, politicians, businesses and consumers are still in denial what this means for our future and what we must do today. At best, we’re all paying lip service while trying to postpone making real changes.

Two examples: Narita airport is planning for a major expansion in flight capacity in the 2020s and Tepco and Chubu Electric Power are trying to open a new coal fired power station in 2023.

One of the greatest concerns behind climate change goals are climate feedback loops, where any amount of additional global warming triggers new causes of global warming. A few examples:

  • If arctic temperatures rise enough for the ground in permafrost regions to thaw in the summer this will lead to CO2 and methane releases from frozen ancient organic matter that starts to rot and decay.
  • Warming oceans may release methane trapped in icy slush as methane clathrate on the sea bed.
  • If summer air temperatures on the Greenland ice sheet rise enough to melt snow during daytime before freezing again, it changes the albedo of the frozen surface to absorb more sunlight and melt again more easily.

So if we want to avoid runaway global warming, we have a very tight CO2 budget that we can still release before the world has to run on 100% non-fossil energy sources.

What we would need is a moonshot-like project, with our brightest minds and financial resources focused on switching all power generation to non-fossil energy, expanding it to take over from other uses of oil and gas such as transport while minimizing release of CO2 outside of power generation. That means not just electric cars and trucks but also fewer cars, less air travel, no more deforestation, minimal consumption of cement and steel and more recycling.

While the Japanese government has formally committed itself to fighting climate change, the reality looks different. Last year the Narita International Airport Corp., government ministries and local government agreed to a plan to increase annual takeoff and landing slots from 300,000 to 500,000. To this purpose, a 2,500 m runway will be extended to 3,500 m to handle bigger planes and a third runway of 3,500 m will be built in the 2020s. Currently, there is no practical alternative to kerosene-based jet fuel. More flights and bigger aircraft mean more CO2 emissions from fossil fuel. Instead of making it possible for more people to fly more often, we should be looking for ways to discourage and avoid flying wherever possible.

JERA, a joint venture between Tepco and Chubu Electric Power is trying to build a coal-fired power station at Kurihama near Yokosuka, with plans to start operating in 2023. Coal is the most carbon-intensive of all fossil fuels. One kWh generated by burning coal even in the most advanced coal-fired thermal power stations releases about twice as much CO2 as the same amount of electricity generated from a combined cycle gas turbine (CCGT) power station running on natural gas. With a limited carbon budget it makes no sense to burn any coal if we still have gas. If we really still must expand fossil fuel power generation (and we probably don’t in Japan), coal is by far the worst choice of all fossil fuels available!

Instead of expanding airports and building coal power stations, we should expand offshore wind power and geothermal energy while raising taxes on air travel, for example by taxes on jet fuel. A recent International Energy Agency report estimated the worldwide potential for wind energy production at 11 times the annual electricity consumption of the world. Japan has almost completely blocked offshore wind power. It has a huge Exclusive Economic Zone (EEZ), yet in 2018 Britain’s installed offshore wind power base was over 120 times that of Japan, Germany’s about 100 times and China 70 times. Even Belgium which controls only 0.5% of the North Sea had 20 times more installed offshore wind power capacity than Japan in 2018.

Some air travel can be shifted to trains or to less energy intensive ships. Eventually we will develop technology to fly airplanes with non-fossil fuel, such as methane produced from CO2 with renewable electricity in reverse fuel cells though that won’t be cheap or particularly energy-efficient. But until then we need to make hard choices that take us closer to our goals, not further away from them.

Future generations will struggle as coastal land where hundreds of millions of people worldwide currently live or where they grow food will disappear in the sea as warming oceans expand and glaciers melt. They will have to deal with it.

Whole countries will disappear in the next couple of centuries, including the Netherlands and Bangladesh. The same will happen to most of the ten largest cities in the world. The sea level rises projected until 2100 are by no means the end of the story: Sea level rises for several centuries to come are already locked in with the emissions of the last 200 years. The last time this planet had more than 400 ppm of CO2 in its atmosphere (as opposed to 280 ppm before the industrial revolution) was 3 million years ago, when sea levels where 20 m higher than today. So that’s going to happen again, even if we stopped burning all coal, oil and gas today. But because we are still going to keep doing that for a number of years or decades, the ultimate sea levels will be even higher than they were then.

Maybe in some ways it’s easier to speak truth if you’re a 16 year old school kid, not a politician who wants to get campaign finance from friendly businesses or to get reelected by voters who still want to fly on vacation to Thailand, or a business leader trying to please shareholders instead of saving the planet. But reality is reality, even if we look away. We, or our children and their children, will have to face it eventually and it will be what we make it today.

It Takes a Child to Raise a Village

A few years ago I was visiting Venice. It was a fascinating experience to walk around this ancient city without cars, built on some islands in a lagoon that protected it from the chaos after the fall of the West Roman Empire. I was surprised how eastern some of the architecture looked, because I hadn’t known how tight the connections were between Venice and the Byzantine empire, the successor state to the East Roman Empire. More than a thousand years of history come alive when you walk those ancient cobble-stoned streets.

For a long time Venice has been slowly sinking into the sea. In many buildings I saw, the ground floor was more or less uninhabitable and ruined due to water damage or the risk from regular flooding during storm surges. Sadly, despite all efforts to save it, Venice will disappear in the ocean, gradually swallowed up by rising seas.

The same will happen to Amsterdam, once the capital of a trading nation from where ships sailed to every continent. And not just this city will disappear, but almost the entire country of the Netherlands. It’s not a question of if but when.

Its inhabitants will gradually migrate to other countries in Europe, such as Germany, France or Spain that will be less affected by a 20 m rise of global sea levels. The Netherlands will be virtually wiped out when that happens. So will be Bangladesh and many island nations, as well as Miami, Shanghai, Bangkok, Jakarta, much of Tokyo, London, New York City and many other coastal megacities around the world.

When I was a schoolkid, I learnt from science books that 0.3% or 300 ppm of the earth’s atmosphere was carbon dioxide (CO2). I wasn’t told that only 200 years earlier, before the Industrial Revolution it had only been 280 ppm. Later I learnt that CO2 is a so called “greenhouse gas”, as it traps heat from the surface of the earth and prevents it from escaping into space, thus raising the surface temperature of the planet. As our civilization burns coal, oil and gas and clears forests the CO2 level increases and the greenhouse effect intensifies. In the last couple of decades this has been happening at an increasing rate.

Last year the world consumed about 100 million barrels of crude oil a day. 99.6% of passenger cars on the roads worldwide in 2018 run exclusively on fossil fuels. Worldwide power generation from coal is growing rapidly and is expected to double from 2011 to 2023. Of all the fossil fuels, coal releases the highest amount of CO2 per kWh produced, yet many countries are still building new coal-fired power plant capacity, including here in Japan, where a TEPCO – Chubu Electric Power joint venture still wants to open a new coal-fired power station in Kurihama near Tokyo in 2023/2024.

In 2013, the 400 ppm level was already breached and it is still rising at an increasing rate. How significant is that number? Since humans walked on this planet it had never been as high as this: You have to go back millions of years to find an era when there was as much CO2 in the atmosphere: The last time the CO2 level was above 400 ppm was in the Pliocene (about 3-5 million years ago).

At that time the average global temperature was some 2-3 C higher than today, but temperatures in the arctic and in Antarctica were significantly higher than that. Trees were growing in the southern part of Greenland, which was not covered in thick glaciers as it is today. Trees were also growing in parts of Antarctica. Without billions of tons of water locked up in glaciers in Greenland and Antarctica, sea levels were 20-25 m higher than today. Also these oceans were warmer than today and water expands when it warms up. The rising CO2 levels will melt these glaciers again, until a new equilibrium is established several hundreds years or more in the future. The coast lines will move, gobbling up cities and farm land alike. Ultimately they may well look like those in the Pliocene again, but how much ice will melt and how rapidly it will melt still depends on what we do from now.

To give you an idea of the long term impact of this kind of sea level rise, the former Chinese capital of Nanjing, 200 km from the Yellow Sea, lies only 20 m above sea level. With 25 m of sea level rise the ocean would penetrate about 180 km inland southwest of Beijing. Some of the most densely populated areas of China (national population: 1.3 billion) would be swallowed by the sea.

In Vietnam the two biggest cities, Hanoi and the Red River plain around it, and Ho Chi Minh City (Saigon) and all of the land southwest of it will drown. Many of Asia’s river plains that are now its biggest rice baskets will turn into continental ocean shelf. The same will happen in the Nile valley or along the Euphrates and Tigris in the Middle East.

Note that these are changes that will happen over the next centuries or more regardless of what we do from now. They are the least bad outcome of what is possible. If we do nothing, it will get far worse.

There are feedback cycles that amplify the negative effects. For example, once it gets warm enough in summer in arctic permafrost regions that the ground will melt in summer, then peat and other frozen organic matter in the wet soil will start to decay, releasing huge amounts of methane, an even more powerful greenhouse gas than CO2. This in turn will raise temperatures even higher. Where white sea ice melts in the summer, darker ocean water is exposed below, leading to more sunlight being absorbed and higher air and ocean temperatures. This in turn leads to less sea ice coverage the next year. When snow on top of glaciers thaws and refreezes, it also changes its albedo. The ice absorbs more sunlight than the virgin snow. So every warm spell leads to more warming. Once the thick ice sheet in Greenland and East Antarctica starts melting, its elevation will drop. It’s colder at higher elevations. The reduction in thickness will speed up melting. We could end up with a run-away effect that is impossible to stop until there is no ice left (see this article in National Geographic for maps of what the world will look like then).

The young Swedish climate activist Greta Thunberg, who started campaigning against inaction against climate change as a 15-year old, used the image of a “house on fire”:

Our house is on fire. I am here to say, our house is on fire. […] Adults keep saying: “We owe it to the young people to give them hope.” But I don’t want your hope. I don’t want you to be hopeful. I want you to panic. I want you to feel the fear I feel every day. And then I want you to act. I want you to act as you would in a crisis. I want you to act as if our house is on fire. Because it is.

The changes brought about by man-made climate change will be dramatic, but political action so far has been underwhelming. The steps taken so far or even the steps discussed in public fall far short of what is necessary to avoid even worse outcomes.

There is considerable resistance to taking action against Climate Change. We are not used to thinking much about events beyond our own life time. Politicians will worry about the next elections, business leaders about their next annual business results. Politicians tend to take drastic action only in wars and other major disasters, but Climate Change is going to be bigger than any (non-nuclear) war or hurricane.

If we were honest and ethical, we would not put the stock market value of our power companies or car or airplane manufacturers or our airlines or tourism industry above the future of the planet. The resistance to change from both industry and consumers will be huge, but we owe people the unvarnished truth: That we can’t continue with business as usual.

Even if we switch to electric cars, the steel, copper and glass for those cars for now will be made using fossil fuels. Even the wind turbines, solar panels and battery storage that we have to build at a massive scale to supply renewable energy for our future civilization will largely be manufactured using fossil fuels for years to come. We have to spend our dwindling carbon budget wisely, for example on rebuilding infrastructure instead of on holidays in Bali or a shiny new BMW SUV.

There is as yet no clear technical solution for air travel or for international cargo ships without fossil fuel. The same is true for making cement or for steel production from iron ore. In the short term we could replace kerosene or heavy fuel oil with LNG to reduce CO2 output in transport, but that is not enough and we will need to go much further than that. The next steps will be much harder. We don’t have the solutions yet. Therefore we need a modern moonshot program for a post-fossil future, an all-out effort — not to put more humans on the moon again — but to decarbonise our economies.

Over the last year Greta Thunberg has become a household name worldwide. She has drawn attention to the urgency of change and to the drastic nature of the changes needed. Her youth and thus her expected life span versus those of the politicians and business leaders of today, who mostly won’t be around after the year 2050, gives her a different perspective which the rest of us can then also relate to. It’s not all about us, but about our children and all of humanity after us. Sometimes it takes a child to educate the world.