What we eat after Fukushima

When people ask me how things are here in Japan after the Fukushima nuclear disaster, I tell them life is mostly normal for my family down here in Tokyo, except that we are very careful what we eat. Given the relatively high food prices in Japan I used to pay more attention to how much things cost, but now I watch more where everything is from. I do it not just for me and my wife but also for our kids (two teenagers).

I really do feel sorry for the farmers in areas affected by the radioactive plumes released after the cores of units 1, 2 and 3 melted down and the buildings of units 1, 3 and 4 blew up in hydrogen explosions, but I largely avoid several prefectures as places of origin. I do not have faith in the government or the food distributors to protect us. The sad fact is, there is very limited capacity for inspections and the surprises just keep on coming. Consumer level geiger counters are not suitable for food safety inspections. That takes high end hardware that costs more than US$100,000 apiece and it’s very time consuming. There are not many of these machines around.

Much of the early radioactive scares were about iodine 131, which decays with a half life of only 8 days. It showed up in Tokyo drinking water and in leafy vegetables as far south as Chiba, in Tokyo’s commuter belt. Within 2 months more than 99% of that I-131 had decayed. By now it’s no longer an issue.

Then attention turned to cesium, which is a more long term problem. It will be with us for much longer, for the rest of our lives in the case of Cs-137 (half life: 30 years). If ingested, about half of radioactive cesium is removed again from the body every 3 months, so it’s not as severe as strontium, which stays in the bones forever, but any internal contamination must be taken seriously. There are parts of my native Bavaria, 1200 km from Chernobyl, where 25 years later most wild pigs shot by hunters still have to be disposed of because they exceed government limits for radioactive cesium. They tell us the radioactive release from Fukushima was much smaller than from Chernobyl, but we’re also much closer to it than Germany was to Ukraine and much of our food is grown even closer to it.

Japanese tea as far away as Shizuoka, some 300 km from Fukushima-I, has exceeded government limits for cesium. Rice straw from northern Miyagi prefecture, some 150 km north of Fukushima-I was too contaminated to be fed to cattle.

Rice prices in shops have increased 20-30% recently, from under 1500 yen per 5 kg bag to 1800-2000 yen per bag. This is the result of consumers stocking up on 2010 rice ahead of the next harvest, which is less than 2 months away. People appear to be concerned about what levels of cesium will be measured in 2011 rice. Beef exceeding government limits had already made it to supermarket shelves and dinner tables before the problem was detected, so people are naturally concerned if this won’t also happen with rice. It’s not an easy problem. By mixing rice from different areas, perhaps no single bag of blended rice exceeds government limits, but that is not the answer. According to current scientific theory, a given amount of radioactivity does not cause fewer cases of cancer by spreading it over more people. The proper answer would be to test rice from every field that is potentially affected and exclude rice from contaminated production areas. Naturally farmers will want compensation for food that can’t be sold, which ultimately will be paid by the government. This sets up a direct conflict of interest: The more testing the government does and the more it does to not dilute contaminated rice among uncontaminated rice, the more money it will have to pay to farmers. It is hard to have confidence that consumer safety will take priority under these circumstances.

A lot of the vegetables for stores in Tokyo are grown in Ibaraki, Fukushima prefecture’s southern neighbour, but whenever I can, I buy produce grown either further north (Hokkaido, Aomori) or further west or south (Gunma, Nagano, Shikoku, Kyushu) or imported (e.g. South Korea). Hokkaido in the far north is about as far from Fukushima-I as Kansai (Osaka, Kyoto) is to the west. Most of the dairy products on my shopping list are now from Hokkaido. Our sea food consumption has gone way down compared to pre-3/11 levels.

Domestically produced (koku-san) foods have been near-religiously venerated in Japan for many years. Consumers have been paying huge markups to eat domestically grown food instead of imports and expected the price to reflect higher quality. For example, I could buy twice was much Chinese eel or three times as much Chinese garlic as their Japanese equivalents for the same money. The Japanese government has maintained domestic rices prices above world market levels. People here always had some suspicion about pesticides or other contaminants in imported food, especially from China, but also from the US. With the nuclear disaster, the tables have turned. Gone is the assumption of safety of “koku-san” food, which will make it hard to maintain the price premium that came with it. The radioactive contamination problem is not just a health worry for millions of Japanese, it is also a devastating blow for the future of farmers and fishermen across much of Japan.

Fukushima: Of cows, water and steel

TEPCO is starting nitrogen injection in unit 3 of the Fukushima-I nuclear power plant to guard against the risk of hydrogen explosions, but it initially faced the obstacle of high radiation levels on the first floor of the reactor, where it wanted to connect the nitrogen pipes. Levels as high as 180 mSv/h between the truck bay entrance on the south-west and the containment at the center made this a no-go area. Efforts by a robot to vacuum radioactive dust off the floor on June 2 were ineffective. TEPCO finally solved the problem by laying 1 cm thick steel sheets on the floor around where workers needed to access.

The ex-skf blog reports that this solution was addressing intense gamma radiation coming up from the basement, penetrating the reinforced concrete floor. The unit 3 reactor building basement was estimated by TEPCO to be flooded with 6400 tons of water, containing 1.5 million Becquerels of Cs-134 per cm3 (Bq/cm3) and 1.6 million Becquerels of Cs-137 per cm3 (Bq/cm3). That amounts to 9,600 Terabecquerels (TBq) of Cs-134 and 10,200 Tbq of Cs-137 or 19,800 TBq in total. Besides that there are other radioisotopes such as Iodine and Strontium.

Because the 1 cm of steel (and below that probably more than 10 cm of concrete) still leave too much radiation through, TEPCO is considering another layer of steel sheets now.

Meanwhile, NHK reported yesterday (July 10, 2011 07:33 JST):

The Tokyo Metropolitan government has begun tracing beef from 6 cows shipped from a Fukushima farm where 11 other cows were found contaminated with high levels of radioactive cesium.

On Friday, tests detected 1,530 to 3,200 becquerels per kilogram of cesium in beef from the 11 cows raised in Minami Soma city, about 20 kilometers from the crippled Fukushima Daiichi nuclear power plant. The national safety limit is 500 becquerels. Tokyo ordered the beef to be removed from distribution.

But beef from 6 cows shipped from the farm to
Tokyo and Tochigi in May and June are believed to have already made it to market without radiation testing.

How did that beef end up with 3 to 6 times the legal limit of radioactive cesium? According to the farmer, the cows were raised on hay from last year, before the reactor catastrophe, but were drinking water from a local well.

The ex-skf blog translates a Yomiuri Shimbun article:

According to the investigation by Fukushima Prefecture, 2924 meat cows have been shipped from the same area since the end of April.

See also:

UPDATE (2011-07-13):

It has been reported that the cattle on the farm in Minamisoma had been fed straw that was not covered by a roof and therefore could have been exposed to fallout in rain.

The 105,000 ton cleanup

On Friday, 17 Jun 2011 TEPCO started up the water cleanup plant built for it by Areva SA in France, initially using only two of the four processing lines. Its objective is to decontaminate an estimated 105,100 t of radioactive water to make it safe to use it for reactor cooling or for shipping it to a nuclear waste processing site. Each processing line is designed to handle 300 t of water per day. Within five hours the processing had to be halted, as radioactivity built up much more quickly inside the system than expected.

TEPCO is under tremendous time pressure. Another 500 t of cooling water are pumped into the reactors from the Sakashita dam about 8 km to the wets of the plant every day. After it has cooled what’s left of the reactor cores it has nowhere to go.

Based on numbers published by the company on June 3, there were already 16,200 t of water in unit 1, 24,600 t in unit 2, 28,100 t in unit 3, 22,900 t in unit 4 and 13,300 t in the central radiation waste treatment building, which had mostly pumped been pumped there for from unit 2. In each unit, the basement of the turbine hall accounts for about half the water, with about another quarter in the reactor building and the rest split between the unit’s adjacent radioactive waste treatment building and a underground trench.

Radiation levels near the accumulated water in the basements are as high as 1000 mSv/h. The current legal limit any emergency worker can be exposed to is 250 mSv in total, which they would get in 15 minutes. It’s not safe to work anywhere near this water. If enough accumulated radioactive water can not be decontaminated far enough to be able to reuse it for cooling then TEPCO needs to keep pumping fresh water while bringing online ever increasing storage capacities to prevent the radioactive water from flooding the plant and spilling into the Pacific ocean.

Between them the buildings hold about 142,000 Terabecquerels (TBq) of Cesium-134 (half life 2 years) and 141,000 TBq of Cesium-137 (half life 30 years). Unit 2 holds about half of the total, and almost all of the rest evenly split between unit 3 and the central radiation waste building. That leaves the water in the basements of unit 1 and unit 4, which taken together only contribute a little over 1 percent of the total radioactivity according to TEPCO data. Units 2 and 3 each not only contain 50-60% more water than unit 1, it also is on average about 30 times more radioactive than the unit 1 water, which in turn is 10 times more radioactive than the water in unit 4. The latter had been shut down for maintenance since late November last year and had no fuel in the core at the time of the accident.

Judging solely by the water in the basements, unit 2 was the source of roughly 3/4 of the radioactive release in Fukushima, with most of the rest coming from unit 3. Even though on photographs unit 2 looks the least damaged of the four blocks, internally it is assumed to be in the worst shape, as it suffered an explosion in its pressure suppression chamber (torus) and it may also be damaged elsewhere.

An even greater percentage of the contamination of land is linked to unit 2 versus unit 3 than indicated by their basement radioactivity levels: When unit 3 was being vented and subsequently suffered the worst hydrogen explosion of all four units, the wind was blowing from the west, carrying most of the released radioactivity out over the Pacific. When things went badly wrong at unit 2 however, the wind was blowing from the South-East, carrying huge amounts of contamination over land to Namie and Iitate in the North-West. This is where contamination levels as high as in the most polluted portions of the Chernobyl exclusion zone have been measured.

The nuclear soup in the reactor basements contains about 3 kg of Cs-134 and 44 kg of Cs-137. If the water decontamination system works, most of this will eventually end up in sludge and filter elements that will be stored as highly radioactive waste.

See also:

Fukushima surprises

On April 12, one month after the devastating earthquake and tsunami that took TEPCO by surprise, leading to the meltdown of three reactor cores in Fukushima 1, the Japanese government raised its accident rating for the event. It moved it from a level 5 on the INES scale to a level 7 (same as Chernobyl), based on the amount of radioactivity released by then. At the time the Nuclear and Industrial Safety Agency (NISA) estimated that 370,000 terabecquerels (TBq) had been released into the environment, while the Nuclear Safety Commission (NSC) calculated the release as 630,000 TBq, with all nuclides converted to an equivalent amount of I-131 for comparison purposes.

Yes, we were told, Fukushima technically now ranked on the same scale as Chernobyl, but it had released “only” 10% of the radioactivity of the worst nuclear accident in history. The total release from Chernobyl is estimated at 5,200,000 TBq.

Now NISA has revised its estimate for Fukushima. “NISA on Monday more than doubled its estimate of the radioactive material ejected into the air in the early days of the Fukushima nuclear crisis to 770,000 terabecquerels,” reports the Japan Times. Apparently, the revision was based on the realisation that unit 2 not only leaked through the ruptured suppression chamber as previously known, but also leaked radioactive substances through a damaged containment.

That containment, if you remember the early days of the accident, was going to be why Fukushima was not going to be “another Chernobyl”. Or so we were promised. Now we know it leaked in all three units and even if it had worked, it was so weak that it would have ruptured if some of its content wasn’t intentionally leaked (“vented”) anyway.

Hot water in unit 2

TEPCO has installed a heat exchanger in the spent fuel pool of unit 2, in the only building amongst units 1-4 that still has a roof on it. They were hoping this would allow them to start repairing other parts of the reactor as soon as possible. Their theory was that the high humidity (greater than 99%) in the building was caused by evaporation from hot water in the spent fuel pool under the roof, with the moisture getting trapped inside the building. They managed to bring down the pool temperature much more quickly than anticipated, but to their surprise the humidity didn’t budge much: Unit 2 is still as moist as a greenhouse. This high humidity prevents air filters from being used for bringing down radioactivity levels in the air inside the building before sending in repair crews.

The humidity is probably rising off hot water in the basement. The radioactive decay of what’s left of the reactor core currently still produces about 6 MW of heat inside the containment, which is conducted through the concrete, pipework and any water and steam leaks. 6 MW of heat is roughly the amount of heat that would be produced burning 600 liters of kerosene every hour.

Nobody is really sure where the cores are now. They could still mostly be inside the reactor pressure vessel, with only a small amount leaked into the containment. Or it could be mostly on the concrete floor of the containment. Nobody really knows for sure yet.

Assuming the cores in all three units have melted, the melted core (“corium”) probably has much lower heat output than it originally did, because some 70% of the decay heat in nuclear fuel are from the more volatile elements. Once the uranium oxide heats up high enough to liquify, the volatile elements trapped inside the uranium ceramics can boil off and escape. Later they condensate inside the walls of the pressure vessel or containment. There they mostly get dissolved in water when cooling gets reestablished. After that the lump of uranium and plutonium oxide will only give off some 30% of its original decay heat because so much of the radioactivity will now be elsewhere in the reactor pressure vessel, the containment or other locations.

No pressure in unit 1 RPV and they knew

TEPCO sent workers into unit 1 to install new manometers to measure pressure inside the reactor. Doing their work they were exposed to about 4 mSv each, more than an ordinary person would receive during a whole year, but their risk has enabled us to receive proper data about the reactor pressure in unit 1.

As it turned out, the reactor pressure vessel (RPV) of unit 1 is at atmospheric pressure, which suggests the RPV is connected to the containment (i.e. has holes) and the containment is connected to the outside too. For weeks TEPCO had been pumping nitrogen gas into the RPV to dilute any existing hydrogen, in order to guard against the risk of explosions. No evidence of this nitrogen can be found now, or at least no gas pressure from its pressence.

In parallel with the nitrogen injection, a pressure gage for unit 1 had been showing increasing pressures in the unit 1 RPV, climbing as high as 1,6 MPa (about 16 bar) over the last couple of weeks. However, even before TEPCO installed a new gage they knew that value was wrong, without them telling the public. How do we know that they knew? As physicsforums.com member “elektrownik” noticed, the new gage that they had those workers install has an instrument range of only 0.0 to 0.3 MPa…

TEPCO makes space for a lot of water

The Daily Yomiuri has a picture of some of the water tanks that TEPCO is buying for Fukushima 1. It has ordered 200 tanks holding 100 t each and 170 tanks holding 120 t each, for a total of 40,000 t. Several of these will be brought in each night by truck.

At the roughly 500 t of water that TEPCO pumps in for cooling purposes per day the tanks would last for less than three months. From June 15 TEPCO is planning to recycle 1200 t of highly radioactive water per day, pumped from the reactor buildings. It wants to either reuse it for cooling or to send it to the reprocessing plant in Rokkasho village for final cleanup.

If the water treatment plant doesn’t work as expected, that would be one surprise that TEPCO could definitely do without. The tanks may be one form of insurance against that possibility.

Chernobyl in the basement

TEPCO has released radiation figures for the 2700 t of water in the basement of unit 1 of the Fukushima 1 nuclear power plant:

Tokyo Electric Power Co. <9501> said Monday that the amounts of radioactive materials in water at a reactor building of the Fukushima No. 1 nuclear power plant were about 10,000 times the normal levels for water inside a nuclear reactor.
The water, recently found in the basement of the No. 1 reactor building of the nuclear power plant, contained 30,000 becquerels of iodine-131 per cubic centimeter, 2.5 million becquerels of cesium-134 and 2.9 million becquerels of cesium-137.

(Jiji Press, 2011-05-30)

A total of 2700 t of water are estimated to be in the basement. That works out as 6.75E15 Bq = 6.75 PBq of Cs-134 and 7.83 PBq of Cs-137. For comparison, the total radioactive release from Chernobyl is estimated at 48 PBq of Cs-134 and 89 PBq of Cs-137. That means the water in the basement of unit 1 alone contains about one tenth of all the radioactivity released into the environment by the Chernobyl disaster. When the accident started, we were told that “Fukushima is no Chernobyl” because unlike the Soviet reactor its reactors had containments. Unfortunately, they didn’t work. All that radioactivity mentioned above is already outside of the containment, in a place that was never designed to be flooded with thousands of tons of radioactive water.

Units 2 and 3 are assumed to be in equally bad shape as unit 1, as both suffered a meltdown and neither of those units’ containments still hold any pressure. All three units have flooded basements. Water in a trench near unit 2 was measured at 2 million becquerels of cesium-137 per cubic centimeters on March 30, quite similar in contamination to the unit 1 basement.

When people first entered unit 1 again on May 13, the water level in the basement of unit was reported to be 4.2 m. Two weeks later it is 4.6 m and the storage tanks at the reactor site are almost full. Very soon something needs to happen about that water. To complicate things even more, June is the rainy season in Japan, when typhoons can dump huge amounts of water onto Japan.

The water treatment plant built by Areva is expected to start operating around the middle of this month. TEPCO quoted the cost of decontaminating water with this system at 210,000 yen per ton (about US$2600). It intends to decontaminate 250,000 tons of water by the middle of January 2012, for a total cost of 53.1 billion yen (about US$650 million).

Currently 5 cubic meters per hour (m3/h) are being pumped into unit 1 for cooling, 4.9 m3/h into unit 2 and 12.5 m3/h into unit 3 (which is still overheating). That’s about 550 tons of water per day, which is assumed to leak into the basements of the three reactors, loaded with dissolved radioactive waste from damaged fuel rods. If cooling water feeds continue at current rates, there will be another 8,000 tons of highly radioactive water to be taken care of by the time AREVA’s treatment plant starts up — that is, if all goes according to plan…

A “mega-float” that has been towed to the site for storing and transporting radioactive water can probably only be used for decontaminated water (i.e. with 99.9% of the radioactivity removed), otherwise radiation would be too high to handle. Contaminated water being pumped from the basement of the turbine buildings to storage tanks gives off so much radiation that the piping is covered up with lead wool wherever people have to walk over it and is cordoned off with security tape everywhere else.

If a water pump fails and it has to be replaced, someone will have to disconnect and reconnect pipes to pumps that carry billions of becquerels of radioactivity per liter of water. There will be leaks and puddles and spills. This is not how things would be done if there was any choice.

Fukushima 1 may not make the headlines of the world media much any more, but the situation there is still nightmarish. It’s not the TEPCO managers who are paying for their company’s gross negligence, but unnamed workers of hired subcontractors who are risking their lives and health.

The cleanup and compensation for thousands who lost their homes and incomes through the fallout far exceeds TEPCO’s ability to pay, so tax payers will be forced to pay the bill, yet the government chose not to force TEPCO into bankruptcy. Its share price may have fallen, but its stock did not become worthless as say General Motors in the US car industry bail-out, or perhaps the crops grown by farmers nearby or the now deserted homes owned by families around the plant. TEPCO’s well-connected shareholders were effectively bailed out by the government at our expense.

See also:

Fukushima 1 unit 5 water pump fails

A failure of a sea water pump at unit 5 of the Fukushima 1 Nuclear Power Plant demonstrated the still volatile situation at the reactors. It allowed water temperatures inside the reactor (which had officially been in “cold shutdown” since March 20) to climb as high as 93 degrees C again before a replacement pump restored the water flow and allowed temperatures to drop again. Unlike the heavily damaged units 1 through 3, units 5 and 6 (along with unit 4) had been shut down for maintenance when the quake and tsunami hit. Due to their slightly higher elevation they escaped the worst of the tsunami. A single backup diesel generator for units 5 and 6 survived. So far TEPCO has not announced any plans yet to permanently decommissioning the two units, although the government of Prime Minister Kan pushed for that.

The failed temporary pump provides cool sea water to the heat exchanger of the Residual Heat Removal System (RHRS). TEPCO reports:

At 9:14 pm on May 28th, we found that one temporary residual heat removal system seawater pump of Unit 5 stopped. At 8:12 am on May 29th, replacement work to the spare pump started. After finishing the replacement work, we started the pump at 12:31 pm, and restarted cooling from 12:49 pm.

The RHRS is a cooling system that is used whenever the reactor does not drive a steam turbine, where heat is removed via the attached condenser unit. It is also used to cool the water in the spent fuel pools. Both a loaded reactor core and fuel elements in the pool produce decay heat that needs to be removed for months and years after a shutdown. Both the condenser and the RHRS require a steady flow of seawater to carry away heat.

According to a diagram at the NISA website Units 5 and 6 had been using a temporary pump near their regular cooling water intake channels, which suggests that the normal pumps of the RHRS had been damaged in the tsunami. TEPCO has now set up a new pump (as well as a spare next to it) halfway between the cooling water intake channel and the RHRS and cooling water circulation pumps. For the last two months there had been no spare in place.

Unit 1 dry well radiation levels

There have been some online discussions about spiking radiation level figures in the dry well (primary containment) of unit 1. Here is a graph from atmc.jp:

The original data for this graph are figures published by TEPCO/NISA of the CAMS radiation monitor readings for the three units. Until May 25 this data was available in daily updates on the NISA website under “Seismic Damage Information(the nnnth Release)(As of hh:mm May dd, 2011″, document “Fukushima Dai-ichi Nuclear Power Station Major Parameters of the Plant (As of h:mm, May dd)”. Since then NISA no longer seems to publish those figures. It can still be found vi the “Status of Fukushima Daiichi and Fukushima Daini Nuclear Power Stations after Great East Japan Earthquake” page on the TEPCO website though: Look for “The parameters related to the plants in Fukushima Daiichi Nuclear Power Station”, which has a link to the latest document and a ling to an archive page with previous daily data sets. “CAMS radiation monitor” has entries for D/W A and B, S/C aA and B. The D/W B sensor is the one in the above chart. Strangely, the numbers on the atmc.jp do not always match the data on the NISA/TEPCO sites:

5/18: NISA: 25.4 Sv/h / atmc.jp: 45.4
5/19: NISA: 36.3 Sv/h / atmc.jp: 36.3
5/20: NISA: 46.5 Sv/h / atmc.jp: 46.5
5/21: NISA: 36.2 Sv/h / atmc.jp: 36.2
5/22: NISA: 196 Sv/h / atmc.jp: 196
5/23: NISA: 33.1 Sv/h / atmc.jp: 201
5/24: NISA: 30.5 Sv/h / atmc.jp: 192
5/25: NISA: 204 Sv/h / atmc.jp: 215
5/26: TEPCO: 39.3 Sv/h / atmc.jp: 43.7
5/27: TEPCO: 53.5 Sv/h / atmc.jp: 63.8
5/28: TEPCO: 215 Sv/h / atmc.jp: 215
5/29: TEPCO: 225 Sv/h / atmc.jp: 225
5/30: TEPCO: 41.8 Sv/h / atmc.jp: n/a

The source of the discrepancy between the two sources is unclear as ultimately TEPCO must be the only source of data on the reactor.

Some people have speculated that the sudden increase in the graph indicates that a large amount of fuel melted through the pressure vessel and leaked onto the floor of the dry well. However, that would not explain why the values significantly dropped again and then shot back up again.

TEPCO states that they think the radiation sensors are malfunctioning. I suspect their explanation is the correct one, but how reassuring is that?

Trying to manage a badly damaged nuclear reactor (actually, 3 of them!) and the 4 loaded spent fuel pools next to them with broken instruments whose readings can not be trusted any more is a bit like trying to drive a car without a speedometer and with a shattered windscreen that prevents you from seeing the road, going only by the directions of your passenger who sticks his head out of the window to keep you on the road.

VIA PC3500 board revives old eMachines PC

Last September one of my desktop machines died and I bought a new Windows 7 machine to replace it. Today I brought it back to life again by transplanting a motherboard from an old case that I had been using as my previous Linux server. The replacement board is a VIA MM3500 (also known as VIA PC3500), with a 1.5 GHz VIA C7 CPU, 2 GB of DDR2 RAM and on-board video. It still has two IDE connectors as well as two SATA connectors, allowing me to use both my old DVD and parallel ATA HD drives, as well as newer high capacity SATA drives.

After the motherboard swap I had to reactivate Windows XP because it detected a major change in hardware. Most of the hardware of the new board worked immediately, I could boot and had Internet access without any reconfiguration. When I started with the new machine. I just had to increase video resolution from the default 640×480 to get some dialogs working.

I then downloaded drivers for the mother board and video from the VIA website. I now have the proper CN896 (Chrome IGP9) video driver working too.

When I tested the board as a server with dual 1 TB drives (RAID1), it was drawing 41W at idle. Running in my eMachines T6212 case with a single PATA hard drive it draws 38W at idle.

Before removing the old motherboard I made a note of all the cable connections on both motherboards. The front-mounted USB ports and card reader have corresponding internal cables, which connected to spare on-board USB connectors. The analog sound connectors connect to the motherboard too. The only port at the front left unconnected was the IEEE-1394 (FireWire / iLink) port, which has no counterpart on the VIA board.

It feels great to have my old, fully configured machine with all its data and applications back thanks to a cheap motherboard that works flawlessly.

Fukushima had new vents, but system failed

The New York Times reports that the reactors at the Fukushima 1 nuclear power plant were equipped with an improved system for venting steam in an emergency, but it failed to work. Originally it had been reported that TEPCO did not retrofit the units that had been online since 1970s with the new designs introduced in the US in the 1980s. However, it appears to have done so between 1998 and 2001.

The problem was, the improved system relied on the same sources of electricity to operate valves as the cooling system, so when the cooling system stopped working as diesel generators failed and dangerous levels of steam pressures built up, the venting system designed to protect the containment wasn’t working properly either. Instead of one system protecting the public if the other system failed, both had a single point of failure, their dependence on diesel generators in the flooded turbine hall basements.

The executives did not give the order to begin venting until Saturday — more than 17 hours after the tsunami struck and six hours after the government order to vent.

As workers scrambled to comply with their new directive, they faced a cascading series of complications.

The venting system is designed to be operated from the control room, but operators’ attempts to turn it on failed, most likely because the power to open a critical valve was out. The valves are designed so they can also be opened manually, but by that time, workers found radiation levels near the venting system at Reactor No. 1 were already too high to approach, according to Tokyo Electric’s records from the accident’s early days.

At Reactor No. 2, workers tried to manually open the safety valves, but pressure did not fall inside the reactor, making it unclear whether venting was successful, the records show. At Reactor No. 3, workers tried seven times to manually open the valve, but it kept closing, the records say.

The results of the failed venting were disastrous.

Reactor No. 1 exploded first, on Saturday, the day after the earthquake. Reactor No. 3 came next, on Monday. And No. 2 exploded early Tuesday morning.

The venting system could also have been damaged by the earthquake.

According to the NYT, the new venting system bypasses filters that hold back much of the radioactivity.

When TEPCO was talking about venting the reactors, before the spectacular hydrogen explosions, they reassured the public that the release of gas would be “filtered”. Either they were misleading the public, or they were talking about the old venting system, which was suspected of not being able to cope with the pressure of an emergency release, which is the very reason the new system had been introduced.

See also:

Fukushima cooling system switched off 10 minutes after quake

Data released by TEPCO on May 16 shows that apparently the isolation condenser, a cooling system that is supposed to protect the reactor after a shutdown, was manually shut down in unit 1 within 10 minutes of the earthquake.

When the quake hit at 14:46 on 2011-03-11, the power station lost its grid connection. Diesel generators sprang into life to provide backup power for the Residual Heat Removal System (RHR). Around 15:00 someone manually shut down the isolation condensor. About half an hour later tsunami hit the station. Within minutes the diesel generators failed and the RHR stopped. At that point the battery-operated pumps for the isolation condenser were the only system still able to remove heat from the reactor core, but the valve for this system had been closed by operators. From that point onwards the reactor core was entirely without cooling. Records show that at 18:10 the valve was open again. At 18:25 it was closed again and 21:30 it was open again. The isolation condenser finally failed at 01:48 on 2011-03-12, perhaps because its batteries ran out.

According to the AREVA presentation from 2011-04-07, the isolation condenser in unit 1 stopped at 16:36 on 2011-03-11, but perhaps that was based on incomplete or bad data from TEPCO.

See also:

Fukushima reactor damaged before tsunami

According to a Kyodo news report, extremely high radiation levels were measured in unit 1 of Fukushima 1 nuclear power station the night after the quake, hours before radioactive steam was first vented from the containment vessel at 04:00 the next morning (2011-03-12).

Workers entered the No. 1 reactor building during the night to assess the damage only to hear their dosimeter alarms go off a few seconds later, sources at Tokyo Electric Power Co. said. Since they thought the building was filled with highly radioactive steam, the workers decided to evacuate.

Based on the dosimeter readings, the radiation level was about 300 millisieverts per hour, the source said, suggesting that a large amount of radioactive material had already been released from the core.

The source of the steam was believed to be the No. 1 reactor’s overheated pressure vessel.

But for that scenario to hold, the pressure in the reactor would have to have reached enormous levels — damaging the piping and other connected facilities. It should have taken much more time to fill the entire building with steam.

A source at Tepco admitted it was possible that key facilities were compromised before the tsunami.

(Japan Times, 2011-05-16)

According to the AREVA presentation by Dr Matthias Braun, the reactor isolation condensor in unit 1 stopped working at 16:36 on 2011-03-11, 55 minutes after the diesel generators had been knocked out by the tsunami. After that, pressure from boiling water built up in the reactor pressure vessel, from where it was vented into the containment via water held in the pressure suppression chamber.

It was only when pressure in the containment had built up far beyond its design limit that steam was first vented from it at 04:00 on Saturday, March 12. Radiation levels of hundreds of millisieverts per hour in the building hours before that suggest that steam from the pressure vessel or containment escaped hours before it was supposed to have come out.

Direct seismic damage to pipes, valves or other components from the quake at 14:46 is a plausible explanation for a premature radiation release while the containment was supposedly still serving its function of holding back radioactivity from the environment. The local intensity of the quake was either close to or in excess of the design specification the reactors had been built to. For example, maximum seismic acceleration at unit 3 was measured at 507 gal in East-West direction, versus the 441 gal it was designed for.

So how does it matter if parts of Fukushima prefecture became uninhabitable because of broken steam pipes or because of flooded diesel generators? Isn’t the outcome the same? It’s actually a very important difference: Nuclear power companies in Japan are now taking measures to evaluate tsunami risks in plants around the country. Units 4 and 5 of Hamaoka NPP in Shizuoka were recently shut down because they’re located right on top of a quake fault line, but the plan is to restart them around 2014, after tsunami defenses have been beefed up around them. The problem is, even if — thanks to raised sea walls — the diesel generators were not knocked out by sea water, but the violent shaking were to destroy some other vital part of reactor such as cooling pipes, the outcome could still be the same.

Unit 4 blown up by leak from adjacent unit 3

The Wall Street Journal reports that TEPCO now think the hydrogen explosion that destroyed the service floor above the spent fuel pool in unit 4 was caused by hydrogen leaking from the adjacent unit 3, which also exploded:

Tepco also released its analysis of a hydrogen explosion that occurred at unit No. 4, despite the fact that the unit was in maintenance and that nuclear fuel stored in the storage pool was largely intact.

According to Tepco, hyrogen produced in the overheating of the reactor core at unit 3 flowed through a gas-treatment line and entered unit No. 4 because of a breakdown of valves. Hydrogen leaked from ducts in the second, third and fourth floors of the reactor building at unit No. 4 and ignited a massive explosion.

Adjacent units 3 and 4 are connected, for example by sharing a venting tower for the release of radioactive gases, which is located between them.

Nuclear expert Arnie Gundersen believes it is plausible that the particularly violent explosion that destroyed the top of unit 3 may have involved a criticality event (i.e. a chain reaction) triggered by the well-publicised hydrogen explosion.

See also: