The US state of Washington has decided to ban sales of new cars with internal combustion engines (ICE, gasoline or diesel) by the year 2030. That is five years earlier than in the state of California.
There are two issues to overcome for a switch to battery electric vehicles (BEVs): supply and charging. Two common worries however will not stand in the way of BEVs replacing ICEs: cost and range. Let me explain.
Battery cost per kWh has been dropping for decades and this trend is expected to continue. This is highly significant: Most parts of a BEV car other than the big battery cost either the same as in an ICE car or they’re cheaper. As a result, the cost of batteries will stop being a major obstacle to adoption of BEVs years before the end of the decade.
The same is true for range. Cheaper batteries mean BEVs with more capacity will become affordable. The higher the capacity, the more km of charge can be replenished in a given number of minutes. For example, a Nissan Leaf with a 40 kWH battery will fast-charge from 0 to 80% in 40 minutes. The Volkswagen ID.4 First Edition with an 82 kWh battery (of which 77 kWh are usable capacity) will go from 5% to 80% charge in 38 minutes, essentially double the charging speed (kWh added per minute) for a battery with twice the range. If you can add hundreds of km of range in the time it takes you to use the toilet and get a cup of coffee then BEVs will be just as viable for long distance trips as ICE cars.
By the middle of this decade there is likely to be a wealth of different battery electric vehicle models on the market, with even BEV laggards such as Toyota, Honda and Subaru having joined in. Production could increase to about 50% of new sales of several large makers (e.g. GM, VW). It will have to scale up further, with the necessary increase in battery production capacity, by the end of the decade to make this happen but it seems eminently doable. Right now, the major bottleneck to ramping up production is not lack of demand but limited availability of battery cells. Every big car maker getting into BEVs will have to build Gigafactories churning out battery packs, or team up with battery makers who make these huge investments.
The more BEV there will be on the road, the more the impact on the electric grid becomes an issue. If you have a car that can cover 300 km or more on a full battery and you can charge at home every night then most likely you will almost never have to seek out a charging station, unlike drivers of ICE cars who regularly will have to fill up at a gas station. BEVs parked in a driveway or garage with a nearby wall socket are much easier to accommodate than cars currently parking in the street or on parking lots, who will require capacity at paid public charging points, which are more likely to be used at daytime. The grid has plenty of capacity for off-peak charging (e.g. overnight), but if a lot of people want to do their charging at superchargers or other fast charging points, this could require an upgrade in generating and transmission capacity to cover a higher daytime peak load. Vehicle to grid technology would help to make this more manageable, as cars sitting idle in a driveway could provide spare power for the few cars doing the odd long distance trip.
In any case, I see a date roughly around 2030 as the Goldilocks target for a phase-out of ICE-powered new cars. For high income countries this goal is neither too unambitious nor too unrealistically aggressive. Japan’s goal by contrast for a phase-out by the mid-2030s that still allows hybrid ICEs like the Toyota Prius after that date is quite unambitious. By setting the bar that low, prime minister Suga pleases Toyota, as expected, allowing it to keep selling dated technology in Japan that they will no longer be able to sell elsewhere. That puts Japan in the company of developing countries, which will most likely continue using ICE cars exported from rich countries for years to come.
The sooner rich countries switch to BEVs, the shorter the long tail of CO2-emitting ICE cars still running in poorer countries will be.